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Kapitel 1

Grundlagen: Logik, Mengen,
Funktionen

1.1 Logik

1.1.1 Grundlagen

In der Logik werden (mathematische) Aussagen untersucht. Eine Aussage ist eine Äusserung, die entweder wahr
oder falsch ist. [Ziltener, 2024] (wahr oder falsch).

In der mathematischen Logik gelten die folgenden Sätze.

• Satz vom ausgeschlossenen Widerspruch: Eine Aussage ist nicht sowohl war als auch falsch.

• Satz vom ausgeschlossenen Dritten: Jede Aussage ist wahr oder falsch.

[Ziltener, 2024]

Bemerkung:-

Es gibt gewisse Aussagen, als logische Aussage gelten könnte aber nicht zulässig ist. Solche Aussagen sind
meisten rückbezügliche Äusserungen und sind deswegen keine sinnvollen Aussagen. (Siehe Lügner-Paradox)

Aussagen können verneint und miteinander verknüpft werden.

Notation Bedeutung Bezeichnung
T wahr
F falsch
¬𝐴 nicht A Negation

Für Verknüpfungen verwenden wir folgende Notationen.

Notation Bedeutung Bezeichnung
𝐴 ∧ 𝐵 𝐴 und 𝐵 Konjunktion
𝐴 ∨ 𝐵 𝐴 oder 𝐵 inklusive Disjunktion
𝐴 ¤∨𝐵 entweder 𝐴 oder 𝐵 exklusive Disjunktion
𝐴⇒ 𝐵 wenn 𝐴, dann 𝐵 Implikation
𝐴⇔ 𝐵 genau dann 𝐴, wenn 𝐵 Äquivalenz

Die Wahrheitstabelle der vorher erwähnten Verknüpfungen ist wie folgt.

𝐴 𝐵 𝐴 ∧ 𝐵 𝐴 ∨ 𝐵 𝐴 ¤∨𝐵 𝐴⇒ 𝐵 𝐴⇔ 𝐵

F F F F F T T
F T F T T T F
T F F T T F F
T T T T F T T

Aus der Tabelle kann man die Zusammenhänge der Verknüpfungen erkennen.
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Bemerkung:-

Wir unterscheiden zwischen dem inklusiven Oder und dem exklusiven Oder. Beim inklusiven Oder können
beide Aussagen wahr sein während beim exklusiven oder nur einer der beiden Aussagen wahr sein kann.

Bemerkung:-

Verknüpfende Aussagen brauchen inhaltlich nicht zusammenzuhängen.

1.1.2 Äquivalenz

Satz 1.1.1 Äquivalenz

Seien 𝑃 und 𝑄 Aussagen. Wenn 𝑃 und 𝑄 die gleichen Aussagen haben, so nennen wir sie logisch Äquivalent.

𝑃 ≡ 𝑄 (1.1)

Sobald 2 Aussagen äquivalent sind, so ist ihre Implikation, sowie ihr Kontraponiertes logisch äquivalent.

Satz 1.1.2 Kontraponiertes

Das Kontraponierte zur Implikation 𝐴⇒ 𝐵 ist

¬𝐵 ⇒ ¬𝐴 (1.2)

Dabei gilt

𝐴⇒ 𝐵 ≡ ¬𝐵 ⇒ ¬𝐴.

Die Äquivalenz 𝐴⇔ 𝐵 ist nur wahr, wenn die Implikationen 𝐴⇒ 𝐵 und 𝐵 ⇒ 𝐴 beide wahr sind.

𝐴⇔ 𝐵 ≡ (𝐴⇒ 𝐵) ∧ (𝐵 ⇒ 𝐴).

1.1.3 Axiome, Sätze und Beweise

In der Mathematik sind Axiome von grosser Bedeutung. Sie sind das Fundament der Mathematik. In der Analysis
werden wir jedoch Sätze verwenden, welche durch Axiome bewiesen worden sind.

Um Aussagen zu Beweisen, verwenden wir in der Logik den Modus Ponens.

Definition 1.1.1: Modus Ponens

Ein Beweis einer Aussage 𝐴 ist eine sukzessive Herleitung von 𝐴 aus den Axiomen, in der logische Schlussre-
geln angewendet werden. Eine solche Regel ist der Modus Ponens.

𝐴
𝐴⇒ 𝐵

B
𝐴 ist die Prämise, 𝐵 die Konklusion.

Aus dem Modus Ponens können wir schliessen, dass wenn 𝐴 und 𝐴⇒ 𝐵 gilt, so gilt 𝐵. Der Modus Ponens ist die
Basis eines Beweises. Wir werden später sehen, dass wir den Modus Ponens im Hintergrund verwenden.

Bemerkung:-

Wir können auch Beweise durchführen durch die Kontraposition.

In der Analysis werden wir auch mit indirekten Beweisen arbeiten. Dabei nehmen wir an, dass eine Aussage falsch
ist, woraus wir eine falsche Aussage herleiten. Dies nennen wir auch den Beweis mittels Widerspruch. Es lohnt
sich aber oft, einen Widerspruchsbeweis als direkten Beweis umzuschreiben, da aus eine falsche oder einer wahren
Aussage eine beliebige wahre Aussage hergeleitet werden kann.
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Satz 1.1.3 Prinzip der vollständigen Induktion

Nehmen wir an das die Funktion 𝑃(0) gilt. Wegen dem Prinzip der vollständigen Induktion gilt für 𝑘 ∈ ℕ0

𝑃(𝑘) ⇒ 𝑃(𝑘 + 1).

1.2 Mengenlehre

1.2.1 Grundlagen

Eine Menge ist eine ungeordnete Zusammenfassung von Objekten zu einem Ganzen. Die in einer Menge enthal-
tenen Objekte nennen wir ihre Elemente. [Ziltener, 2024]

Satz 1.2.1 Schreibweise einer Menge

Nehmen wir an, dass 𝑥1 , 𝑥2 , ...𝑥𝑛 Elemente sind. Dann ist die Menge, bestehend aus den Elementen
𝑥1 , 𝑥2 , ...𝑥𝑛

{𝑥1 , 𝑥2 , ...𝑥𝑛}.

Bemerkung:-

Mengen können wiederholende Elemente besitzen.

Bemerkung:-

Zahlen können bestimmte Zahlenmengen bilden. (ℕ,ℤ,ℝ)

Definition 1.2.1: Beschreibende Mengenschreibweise

Die beschreibende Mengenschreibweise ist eine Aussageform, welche Elemente 𝑥 definiert, die in einer
Menge enthalten sein können und eine Bedingung 𝑃(𝑥) erfüllen.

{𝑥|𝑃(𝑥)}Für die Menge aller 𝑥, für die 𝑃(𝑥) gilt. (1.3)

Bemerkung:-

{...} stellen mengen dar, während [] und () meistens Intervalle darstellen. [] sind geschlossene Intervalle. Wenn
man z.B. [1, 5] schreibt, so sind es alle Zahlen zwischen 1 und 5 inklusive der 1 und 5. () sind offene Intervalle.
Schreibt man z.B. (1, 5), so sind alle Zahlen zwischen 1 und 5 exklusive 1 und 5 gemeint.

1.2.2 Mengenoperationen und Teilmengenrelation

Wie in Kapitel 1.1 haben Mengen auch Logikoperationen. Sie sind sehr ähnlich zu den normalenLogikoperationen.
𝐴 ∪ 𝐵 {𝑥|𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵} = Durchschnitt
𝐴 ∩ 𝐵 {𝑥|𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵} = Vereinigung
𝐴 \ 𝐵 {𝑥 ∈ 𝐴|𝑥 ∉ 𝐵} = Differenz

Wenn die Menge 𝐴 auch in der Menge 𝐵 liegt, so ist 𝐴 eine Teilmenge von 𝐵.

𝐴 ⊆ 𝐵.

Satz 1.2.2 Das Komplementär einer Menge

Das Komplementär einer Menge definiert eine Menge 𝐴, welche die Elemente einer anderen Menge 𝐵 nicht
beinhaltet.
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𝐵∁ = 𝐴 \ 𝐵.

Satz 1.2.3 De-Morganschen Gesetze

• (𝐴 ∪ 𝐵)∁ = 𝐴∁ ∩ 𝐵∁

• (𝐴 ∩ 𝐵)∁ = 𝐴∁ ∪ 𝐵∁

Satz 1.2.4 Tupel

Wenn wir eine Liste von Elementen, bestehen aus 𝑥1 , ..., 𝑥𝑛 haben, so nennen wir diese Liste ein Tupel.
Die Anzahl von Elementen 𝑛 sowie die Anordnung der Elementen spielt eine Rolle.

• Für 𝑛 = 2 nennen wir den Tupel ein Paar.

• Für 𝑛 = 3 nennen wir den Tupel ein Trippel.

• Für alle anderen 𝑛 bezeichnet man die Liste als n-Tupel.

Wie schon vorher erwähnt spielt die Anordnung eine grosse Rolle. ((𝑥1 , 𝑥2) ≠ (𝑥2 , 𝑥1))

Satz 1.2.5 Karthesisches Produkt

Das Produkt zweier Mengen (karthesische Produkt) 𝑋 und 𝑌 kann als eine Menge bestehend aus den
Permutationen den Elementen der beiden Mengen dargestellt werden.

Bemerkung:-

Für Potenzen gilt das gleiche Prinzip, i.e 𝑋2 = 𝑋 × 𝑋, 𝑋3 = (𝑋 × 𝑋) × 𝑋, usw.

Definition 1.2.2: Euklidische Norm

Die euklidische Norm || · || ist die Distanz von einem Punkt, z.B. 𝜈 zu ihrem Ursprung und wird wie folgt
berechnet.

||𝜈|| :=

√√
𝑛∑
𝑖=1

𝑣2
𝑖
.

(i) Für die euklidische Norm gilt die Dreiecksungleichung ||𝑥 + 𝑌|| ⩽ ||𝑥|| + ||𝑦|| [Schultheis, 2025]
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Satz 1.2.6 Offener und abgeschlossener Ball, Sphäre

E in Ball oder eine Sphäre ist eine Menge von Punkten in einen 𝑛-Dimensionalen Raum, welche einen
bestimmten Abstand zum Mittelpunkt des Balles bzw. der Sphäre haben.

1. Der offene Ball ist eine Menge von Punkten, deren Abstand zum Mittelpunkt 𝑥0 kleiner als der Radius
𝑟 ist.

𝐵𝑟(𝑥0) := 𝐵𝑛𝑟 (𝑥0) := {𝑥 ∈ ℝ𝑛|||𝑥 − 𝑥0|| < 𝑟}.

2. Der abgeschlossene Ball ist eine Menge von Punkten, deren Abstand zum Mittelpunkt 𝑥0 kleiner oder
gleich dem Radius ist.

𝐵̄𝑟(𝑥0) := 𝐵̄𝑛𝑟 (𝑥0) := {𝑥 ∈ ℝ𝑛|||𝑥 − 𝑥0|| ⩽ 𝑟}.

3. Die Sphäre ist eine Menge von Punkten, deren Abstand zum Mittelpunkt 𝑥0 gleich dem Radius ist.

𝑆𝑛−1𝑟 (𝑥0) := {𝑥 ∈ ℝ𝑛|||𝑥 − 𝑥0|| = 𝑟}.

Abbildung 1.1: Von links nach rechts: Offener Ball, abgeschlossener Ball, Sphäre

Bemerkung:-

Dass die Sphäre eine Dimension verliert (𝑛−1) ist auf den ersten Blick verwirrend, macht aber Sinn. Bei einer
Sphäre wird nur der Mantel betrachtet. Dadurch wird der Freiheitsgrad verringert was dazu führt, dass eine
Dimension verloren geht i.e. der Mantel einer Kugel ist eine Fläche oder der Rand einer Kreisscheibe ist eine
Linie.
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Satz 1.2.7 Fall 𝑟 = 0 und 𝑟 = ∞
Falls 𝑟 = 0 gilt für den Ball

• 𝐵0(𝑥0) = ∅ da die euklidische Norm nicht kleiner als 0 sein kann

• 𝐵̄0(𝑥0) = {𝑥0} da der einzige Punkt dessen Abstand zum Mittelpunkt null ist der Mittelpunkt selbst
ist.

Falls 𝑟 = ∞, dann gilt

• 𝐵∞(𝑥0) = ℝ𝑛

• 𝐵̄∞(𝑥0) = ℝ𝑛

Bemerkung:-

Obwohl ℝ𝑛 ein offener und auch ein geschlossener Ball sein kann bedeutet es nicht, dass 𝐵∞(𝑥0) = 𝐵̄∞(𝑥0) ist.
Das Problem ist, dass kein Rand existiert für einen Kreis mit 𝑟 = ∞. Deshalb ist ℝ𝑛 beides.

1.3 Quantoren

Quantoren sind logische Operatoren, die angeben, wie viele Objekte 𝑥 eine Bedingung 𝑃(𝑥) erfüllen. Die zwei
wichtigsten Quantoren sind die folgenden: [Ziltener, 2024]

Notation Bedeutung Beziehung
∀ für jedes- für alle” Allquantor
∃ ës gibt” Existenzquantor

[Ziltener, 2024]

Bemerkung:-

Die Reihenfolge der Quantoren spielt eine Rolle. Dies können wir an den vorherigen Beispielen erkennen.

Satz 1.3.1 Verneinung einer quantifizierten Aussageform

Die Verneinung von den Quantoren ∀ und ∃ ist wie folgt definiert.

¬(∀𝑥 ∈ 𝑋 : 𝑃(𝑥)) ≡ ∃𝑥 ∈ 𝑋 : ¬𝑃(𝑥).
¬(∃𝑥 ∈ 𝑋 : 𝑃(𝑥)) ≡ ∀𝑥 ∈ 𝑋 : ¬𝑃(𝑥).

1.4 Funktionen

Intuitiv ist eine Funktion (oder Abbildung) von 𝑋 nach 𝑌 eine Vorschrift, die jedem Element 𝑥 ∈ 𝑋 ein eindeutiges
Element 𝑦 ∈ 𝑌 zuordnet. [Ziltener, 2024]

Definition 1.4.1: Funktion

Eine Funktion (oder Abbildung) ist ein Tripel

𝑓 = (𝑋,𝑌, 𝐺),
wobei 𝑋 und 𝑌 Mengen sind und 𝐺 ⊆ 𝑋 × 𝑌 eine Teilmenge, sodass es für jedes 𝑥 ∈ 𝑋 genau ein 𝑦 ∈ 𝑌
gibt, sodass (𝑥, 𝑦) ∈ 𝐺.
[Ziltener, 2024]
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Definition 1.4.2: Definitionsbereich, Zielbereich, Graph, Wert in einem Punkt

Für die Funktion 𝑓 haben wir folgende Definitionen um die Eigenschaften einer Funktion zu definieren.

• dom 𝑓 := dom( 𝑓 ) := Definitionsbereich von 𝑓 := 𝑋 Der Definitionsbereich sind die Werte von 𝑥,
welche für diese Funktion erlaubt sind.

• codom 𝑓 := codom( 𝑓 ) := Zielbereich von 𝑓 := 𝑌 Der Zielbereich sind die Werte von 𝑦, welche für
diese Funktion erlaubt sind.

• Graph von 𝑓 := 𝐺

• Wert von 𝑓 an der Stelle 𝑥 ∈ 𝑋 := 𝑓 (𝑥) := 𝑦

• 𝑓 : 𝑋 → 𝑌 := ”dom 𝑓 = 𝑋und codom 𝑓 = 𝑌”

Definition 1.4.3: Bild

Das Bild einer Funktion 𝑓 ist eine Menge, welche die möglichen codom( 𝑓 ) beinhaltet (im( 𝑓 ) ⊆ codom( 𝑓 )).

𝑓 (𝐴) := { 𝑓 (𝑥)|𝑥 ∈ 𝐴}.
Was bedeutet das? Wenn wir die Menge 𝐴, welches eine Teilmenge von 𝑋 ist, auf 𝑓 verwenden, so bekom-
men wir ein Teil, gegebenenfalls alle Elemente von 𝑌.

Definition 1.4.4: Urbild

Das Urbild einer Funktion 𝑓 ist eine Menge, welche die möglichen dom( 𝑓 ) beinhaltet ( 𝑓 −1 ⊆ dom( 𝑓 ))

𝑓 −1(𝐵) := {𝑥 ∈ 𝑋| 𝑓 (𝑥) ∈ 𝐵}.
Was bedeutet das? Wenn wir die Menge 𝐵, welches eine Teilmenge von 𝑌 ist, auf die Inverse von 𝑓 ( 𝑓 −1)
verwenden, so bekommen wir ein Teil, gegebenenfalls alle Elemente von 𝑋.

Wir werden nun weitere Eigenschaften von Funktionen kennenlernen: Die Injektivität, Surjektivität und Bijekti-
vität.

Definition 1.4.5: Injektiv

Eine Funktion ist injektiv wenn

∀𝑥, 𝑥′ ∈ 𝑋 : 𝑓 (𝑥) = 𝑓 (𝑥′) ⇒ 𝑥 = 𝑥′.

Einfach gesagt bedeutet dies, dass ein Element von 𝑋 nicht dasselbe Resultat ausgibt, wenn das Element
in die Funktion eingesetzt wird.

Definition 1.4.6: Surjektiv

Eine Funktion ist surjektiv wenn

∀𝑦 ∈ 𝑌∃𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑦.

Einfach gesagt bedeutet dies, dass ein Element von Y durch ein Element von X zugeordent ist. Dabei kann
ein Element von X auch mehrere Elemente von Y zugeordnet sein.
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Definition 1.4.7: Bijektiv

Eine Funktion ist bijektiv wenn sie injektiv und surjektiv ist. Mathematisch bedeutet dies

(∀𝑥, 𝑥′ ∈ 𝑋 : 𝑓 (𝑥) = 𝑓 (𝑥′) ⇒ 𝑥 = 𝑥′) ∧ (∀𝑦 ∈ 𝑌∃𝑥 ∈ 𝑋 : 𝑓 (𝑥) = 𝑦).

Bemerkung:-

Funktionen können injektiv und surjektiv (und gegebenenfalls bijektiv) gemacht werden, wenn der Wertebe-
reich geändert wird.

Bemerkung:-

Die Identität ist eine Funktion, welches sich selber wieder ausgibt.

𝑓 (𝑥) = 𝑥.

Definition 1.4.8: Umkehrfunktion / Inverse

Die Umkehrfunktion oder Inverse einer Funktion ist eine Funktion, welches das Gegenteil der ur-
sprünglichen Funktion 𝑓 macht.

𝑓 (−1) : 𝑌 → 𝑋, 𝑓 (−1)(𝑦) := 𝑥.

In anderen Worten: wenn man ein Element von X in die Funktion einsetzt, so bekommt man ein Element
von Y. Wichtig zu erwähnen ist, dass eine Inverse nur existiert, wenn die Funktion bijektiv ist.

Definition 1.4.9: Verknüpfung von Funktionen

Die Verknüpfung von Funktion ist wie folgt definiert.

𝑔 ◦ 𝑓 : 𝑋 → 𝑍, 𝑔 ◦ 𝑓 (𝑥) := 𝑔( 𝑓 (𝑥)).
Dies bedeutet nichts weiter, dass der codom( 𝑓 ) in die Funktion 𝑔 eingesetzt wird, und Elemente von 𝑍
dabei herauskommen.
Wichtig zu erwähnen ist, dass die codom( 𝑓 ) = dom(𝑔) ist, weil sonst die Verknüpfung nicht funktionieren
würde.
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Kapitel 2

Zahlen und Vektoren

Neben Logik bilden Zahlen die Basis für die Analysis.

2.1 Die natürlichen, ganzen und rationalen Zahlen

Definition 2.1.1: Die natürlichen, ganzen und rationalen Zahlen

Die natürlichen Zahlen sind definiert als alle positive ganze Zahlen.

ℕ = {1, 2, 3, ...}.
Die ganzen Zahlen sind alle ganzen Zahlen.

ℤ = {...,−3,−2,−1, 0, 1, 2, 3, ...}.
Die rationalen Zahlen sind alle Brüche.

ℝ = {𝑚
𝑛
|𝑚 ∈ ℤ, 𝑛 ∈ ℕ}.

Bemerkung:-

1. ℕ ⊆ ℤ ⊆ ℝ (Die Menge der ganzen Zahlen beinhaltet die Menge der natürlichen Zahlen und die Menge
der rationalen Zahlen beinhaltet die Menge der ganzen Zahlen)

2. ℕ0 beschreibt die Menge der natürlichen Zahlen inklusive 0.

Trotz der unendlichen Möglichkeiten rationale Zahlen zu bilden wird es immer noch löcher in der Zahlenebene
geben, welche nicht von den rationalen Zahlen gedeckt werden kann. Deshalb führen wir eine neue Art von Zahl
ein.

2.2 Die reellen Zahlen

Wie im letzten Kapitel besprochen führen wir eine neue Zahl ein, welche die Löcher in der Zahlenebene ”stopfen”
kann. Diese Zahl, auch reelle Zahl genannt, wird auch als Dedekind-Schnitte bezeichnet.
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Definition 2.2.1: Menge der reellen Zahlen, Dedekind-Schnitte [Ziltener, 2024]

Eine reelle Zahl (oder Dedekind-Schnitt oder Dedekindscher Schnitt) ist eine Teilmenge 𝑥 ⊆ ℚ mit den
folgenden Eigenschaften:

(a) 𝑥 ≠ ∅

(b) 𝑥 ≠ ℚ

(c) ∀𝑟 ∈ 𝑥∀𝑠 ∈ ℚ : 𝑠 > 𝑟 ⇒ 𝑠 ∈ 𝑥

(d) ∀𝑟 ∈ 𝑥∃𝑠0 ∈ 𝑥 : 𝑠0 < 𝑟

Wir definieren

ℝ := reelle Zahl = Dedekind-Schnitt.

Bemerkung:-

Die Definition von Herr Ziltner ist eine alternative Definition. Normalerweise tut man die untere Hälfte defi-
nieren. Da die Rechenoperationen der unteren Hälfte aufwendiger zu definieren ist als die obere, definieren wir
die untere Hälfte.

In anderen Worten ist eine reelle Zahl eine Menge von rationalen Zahlen, welche in eine oberen und in einer
unteren Hälfte unterteilt ist. Dies beide Hälften sind eine Teilmenge der rationalen Zahlen. Punkt (a) besagt, dass
die untere Hälfte rationale Zahlen beinhalten muss und nicht die leere Menge sein darf. Zusätzlich darf die untere
Hälfte nicht eine reelle Zahl sein da sonst die untere Hälfte die ganze Zahlenebene wäre. Dies besagt Punkt (b).
Punkt (c) sagt aus, dass eine rationale Zahl 𝑠 gibt, welche kleiner ist als die Zahl 𝑟, welche sich in der unteren
Hälfte befindet. Zusätzlich gilt laut (d), dass es kein grösstes Element 𝑠0 gibt, welches grösser als 𝑟 ist.

Bemerkung:-

Damit es keine Verwirrung gibt zwischen der reellen Zahl 𝑟 =
√
2 und der reellen Zahl als ein Intervall von

einem Dedekind-Schnitt wird diese als r gekennzeichnet. (In der Vorlesung r )

Formell beschreiben wir der Dedekind-Schnitt

r := 𝑠 ∈ ℚ|𝑠 < 𝑟 ∈ ℝ

was nichts anderes Bedeutet als r ist die Menge aller rationalen Zahlen 𝑠, wobei 𝑠 kleiner als 𝑟, der Grenzwert
vom Intervall ist.
Da wir die reellen Zahlen als eine Menge definiert haben, kann man die üblichen Rechenoperationen nicht mehr
wie bei ”normalen” Zahlen verwenden.
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Definition 2.2.2: Ordnung, Addition, Multiplikation reeller Zahlen [Ziltener, 2024]

(i) (Ordnung:) Für 𝑥, 𝑦 ∈ ℝ definieren wir

𝑥 ⩽ 𝑦 :↔ 𝑥 ⊇ 𝑦𝑑.ℎ.𝑦 ⊆ 𝑥.

𝑥 < 𝑦 :↔ 𝑥 ⩽ 𝑦 ∧ 𝑥 ≠ 𝑦.

(ii) (Addition:) Wir definieren die Addition reeller Zahlen als die Abbildung

+ : ℝ ×ℝ → ℝ.

𝑥 + 𝑦 := +(𝑥, 𝑦) := 𝑟 + 𝑠|𝑟 ∈ 𝑥, 𝑠 ∈ 𝑦.

(iii) (Subtraktion:) Für jedes 𝑥 ∈ ℝ definieren wir −𝑥 als das eindeutige Element von ℝ, sodass

𝑥 + (−𝑥) = 0.

(iv) (Multiplikation:) Wir definieren die Multiplikation reeller Zahlen als die Abbildung · : ℝ × ℝ → ℝ

gegeben durch

𝑥·𝑦 =


{𝑟𝑠|𝑟 ∈ 𝑥, 𝑠 ∈ 𝑦}, falls 𝑥, 𝑦 ⩾ 0.

−((−𝑥) · 𝑦), falls 𝑥 < 0, 𝑦 ⩾ 0.

−(𝑥 · (−𝑦)), falls 𝑥 ⩾ 0, 𝑦 < 0.

(−𝑥 · (−𝑦)), falls 𝑥, 𝑦 < 0

.

Gehen wir die einzelnen Punkte durch. (i) besagt, dass die untere Hälfte 𝑥 ⩾ die andere untere Hälfte 𝑦 ist, genau
dann wenn 𝑥 eine Teilmenge von 𝑦 ist. Zusätzlich gilt, dass 𝑥 > 𝑦 ist wenn 𝑥 ⩽ 𝑦 ist und 𝑥 ≠ 𝑦 ist. In einfachen
Worten gesagt bedeutet dies, dass wenn der untere Grenzwert von 𝑥 kleiner ist als der untere Grenzwert von 𝑦,
so ist 𝑦 entweder in 𝑥 enthalten da sich die zwei Mengen schneiden oder 𝑥 und 𝑦 gleich.
(ii) sagt aus, dass wenn du ein beliebiges Element aus 𝑥 nimmst und ein beliebiges Element aus 𝑦 nimmst und
die zusammen addierst, so erhältst du eine Zahl, welches grösser ist als 𝑋 +𝑌, wobei 𝑋 die reelle Zahl ist, welche
𝑥 darstellen soll und 𝑌 respektive die reelle Zahl ist, welche 𝑦 darstellen soll.
(iii) ist hoffentlich klar.
(iv) ist einfach eine komplizierte Art die Multiplikation zu definieren. Grundsätzlich sagt es aus, dass wenn du
ein Element von 𝑥 nimmst und ein Element von 𝑦 und die miteinander multiplizierst, so erhältst du eine neue
Menge welches die resultierende reelle Zahl aus Dedekind-Schmitte darstellt.

Lenma 2.2.1 Bernoullische Ungleichung [Ziltener, 2024]

Für alle 𝑛 ∈ ℕ0 und 𝑥 ∈ [−1,∞) gilt
(1 + 𝑥)𝑛 ⩽ 1 + 𝑛𝑥.

In einfachen Worten sagt die Bernoullische Ungleichung, dass exponentielles Wachstum stärker oder gleich stark
ist wie lineares Wachstum. Diese Gleichung wird vor allem für Beweise von der Konvergenz von Reihen und Folgen
verwendet. Meistens wird der Beweis mit Induktion durchgeführt.

Definition 2.2.3: b-adischer Bruch [Ziltener, 2024]

Sei 𝑏 ⩽ 2. Ein b-adischer Bruch ist Abbildung 𝑎 : ℤ → {0, ..., 𝑏 − 1}, oder das Negative einer solchen
Abbildung, mit den folgenden Eigenschaften:

(a) Es gibt eine Zahl 𝑘 ∈ ℤ, sodass für jedes 𝑖 > 𝑘 gilt 𝑎𝑖 := 𝑎(𝑖) = 0.

(b) Es gibt keine Zahl 𝑖 ∈ ℤ, sodass für jedes 𝑖 ⩽ 𝑙 gilt 𝑎𝑖 = 𝑏 − 1.

Wir definieren
𝑅𝑏 := {b-adischer Bruch}.
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Der b-adischer Bruch ist einfach gesagt eine Art, um eine reelle Zahl darzustellen. 𝑏 ist die Basis und zeigt mit
welchen Zahlen die reelle Zahl dargestellt werden kann. (10 = Dezimalsystem) Dabei gilt, dass der 𝑏-adischer
Bruch laut (a) nach links alle Elemente eventuell Null sein werden, jedoch laut (b) nach rechts nicht die gleiche
Zahl wiederholen dürfen. Dadurch werden Zahlen eliminiert, welche einfach aufgerundet werden können.

Definition 2.2.4: Ordnung von 𝑏-adischer Brüchen [Ziltener, 2024]

Wir definieren <𝑏 als die strikte lexikographische Ordnung auf ℝ𝑏 . d.h. für 𝑎, 𝑎
′ ∈ ℝ𝑏 definieren wir

𝑎 <𝑏 𝑎
′ :→ ∃𝑛 ∈ ℤ(∀𝑖 > 𝑛 : 𝑎𝑖 = 𝑎′𝑖) ∧ 𝑎𝑛 < 𝑎′𝑛 .

Wir definieren
𝑎 ⩽𝑏 𝑎′ :→ 𝑎 = 𝑎′ ∨ 𝑎 <𝑏 𝑎

′.

Die obige definition sagt einfach aus, dass man die Zahlen einer reellen Zahl ausgedrückt als ein 𝑏-adischer Bruch
von links nach rechts vergleicht. Sobald die Zahl 𝑎 kleiner ist als 𝑎′ so ist die Zahl grösser zur Basis 𝑏. Dabei ist
einfach wichtig, dass die vorherigen Zahlen gleich sind.

Definition 2.2.5: Betrag [Ziltener, 2024]

Der (Absolut-) Betrag einer Zahl ist die Zahl

|𝑥| :=
{
𝑥, falls 𝑥 ⩾ 0

−𝑥, sonst
.

Hoffentlich ist der Betrag einer Zahl allen bekannt. Diese Definition ist einfach formell und sagt aus, dass wenn
die Zahl 𝑥 positiv ist so ist deren Betrag die Zahl selbst und sonst ist es −𝑥, da das negative einer negativen Zahl
eine positive Zahl ergibt.
Mit dem Betrag können 2 Sätze eingeführt werden, welche für Beweise sehr nützlich sind.

Satz 2.2.1 Dreiecks-Ungleichung [Ziltener, 2024]

Für alle 𝑥, 𝑦 ∈ ℝ gilt
|𝑥 + 𝑦| ⩽ |𝑥| + |𝑦|.

Satz 2.2.2 Youngsche Ungleichung [Ziltener, 2024]

Es seien 𝑥, 𝑦, 𝑐 ∈ ℝ, sodass 𝑐 > 0. Dann gilt

2|𝑥𝑦| ⩽ 𝑐𝑥2 + 𝑦2

𝑐
.
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2.3 Supremum und Infimum

Definition 2.3.1: Schranke, Beschränkheit [Ziltener, 2024]

Sei 𝐴 ⊂ ℝ.

• Eine obere Schranke für 𝐴 ist eine Zahl 𝑏 ∈ ℝ, sodass für jedes 𝑎 ∈ 𝐴 gilt 𝑎 ⩽ 𝑏.

• 𝐴 heisst nach oben beschränkt genau dann, wenn es eine obere Schranke für 𝐴 gibt.

• Die Begriffe untere Schranke und nach unten beschränkt sind analog definiert.

• 𝐴 heisst beschrankt genau dann, wenn 𝐴 nach oben und unten beschränkt ist.

Gehen wir die einzelnen Punkte der Definition durch. Der erste Punkt besagt, dass eine Menge von Zahlen 𝐴 eine
Zahl hat, welche ⩾ der grössten Zahl in der Menge ist. Dies bedeutet, dass die grösste Zahl der Menge diese Zahl
ist oder sie annähert. Dieser wird ”obere Schranke” genannt. Obwohl es mehrere Zahlen sein können ist es keine
Menge.
Punkt zwei sagt aus, dass eine Menge nach oben beschränkt ist, wenn es eine obere Schranke hat.
Punkt drei definiert die obere Schranke gleich der unteren Schranke. Dies bedeutet, dass eine Menge von Zahlen
𝐴 eine Zahl hat, welche ⩽ die kleinste Zahl der Menge ist. Dies bedeutet wiederum, dass die kleinste Zahl der
Menge diese Zahl ist oder sie annähert. Auch hier gilt wieder, dass mehrere Zahlen die obere Schranke sein können,
jedoch die obere Schranke keine Menge ist. Der letzte Punkt definiert eine beschränkte Menge. Eine beschränkte
Menge ist einfach eine Menge, welche nach unten und nach oben beschränkt ist.

Satz 2.3.1 Vollständigkeit der reellen Zahlen [Ziltener, 2024]

(i) Jede nicht leere, nach oben beschränkte Teilmenge 𝐴 ⊂ ℝ besitzt eine kleinste obere Schranke. (Damit
meinen wir ein kleinstes Element der Menge 𝑆 := {−obere Schranke von 𝐴}.)

(ii) Jede nicht leere, nach unten beschränkte Teilmenge 𝐴 ⊂ besitzt eine grösste untere Schranke.

Wie vorher erwähnt kann eine Menge 𝐴 mehrere obere oder untere Schranken haben. Der Satz besagt, dass die
Menge 𝐴, falls sie nicht leer ist eine kleinste obere Schranke haben muss (das grösste Element in der Menge 𝐴)
und eine grösste untere Schranke. (das kleinste Element der Menge 𝐴)

Definition 2.3.2: Supremum, Infimum [Ziltener, 2024]

Sei 𝐴 ⊂ ℝ. Wir definieren das Supremum von 𝐴 als

sup𝐴 :=


kleinste obere Schranke für 𝐴, falls 𝐴 ≠ ∅nach oben beschränkt ist,

∞, falls 𝐴 nicht nach oben beschränkt ist,

−∞, falls 𝐴 = ∅.

Wir definieren das Infimum von 𝐴 als

inf𝐴 :=


grösste untere Schranke für 𝐴, falls 𝐴 ≠ ∅ und 𝐴nach unten beschränkt ist,

∞, falls 𝐴nicht nach oben beschränkt ist,

−∞, falls 𝐴 = ∅.

Gehen wir nun die einzelnen Definitionen von Supremum und Infimum durch.
Das Supremum ist im allgemeinen Fall die kleinste obere Schranke. Falls 𝐴 nicht beschränkt ist, so ist das
Supremum ∞. Falls 𝐴 zusätzlich noch die leere Menge ist, so ist das Supremum von 𝐴 −∞.
Beim Infimum ist die grösste untere Schranke der allgemeine Fall. Falls 𝐴 nicht beschränkt ist, so ist das Supremum
−∞. Falls 𝐴 zusätzlich noch die leere Menge ist, so ist das Infimum von 𝐴 ∞.
Grundsätzlich kann man einfach sagen, dass das Supremum und Infimum die Definitionen von Schranken erweitert.
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Definition 2.3.3: Maximum, Minimum einer Teilmenge von ℝ [Ziltener, 2024]

Sei 𝐴 ⊂ ℝ. Ein Maximum von 𝐴 ist ein Element 𝑎 ∈ 𝐴, sodass 𝑎 ⩾ 𝑏, für jedes 𝑏 ∈ 𝐴. Ein Minimum von
𝐴 ist ein Element 𝑎 ∈ 𝐴, sodass 𝑎 ⩽ 𝑏, für jedes 𝑏 ∈ 𝐴.

Einfach gesagt ist das Maximum bzw. das Minimum einer Menge das grösste, bzw. das kleinste Element von
Menge.

2.4 Komplexe Zahlen

Da wir keine Lösung für 𝑥2 = 2 hatten, haben wir die reellen Zahlen eingeführt. Dies werden wir in diesem Kapitel
ebenfalls tun, da wir keine Lösung für 𝑥2 = −1 haben.

Die Notizen von Herr Ziltner sind nicht sehr nützlich, weshalb ich dieses Kapitel überspringen werde. Ich würde
die Notizen von ”Mathematische Methoden (frühere Name Komplexe Analysis)” anschauen.
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Kapitel 3

Folgen und Reihen

Eine Folge ist eine unendlich geordnete Liste von Zahlen. [Ziltener, 2024] Wenn die Terme einer Folge sich einer
Zahl 𝐴 annähern, so konvergiert die Folge. Die zu einer Folge (𝑎𝑛)𝑛∈ℕ0

gehörende Reihe ist die Folge der Par-

tialsummen (
𝑛∑
𝑘=0

𝑎𝑘)𝑛∈ℕ0
. Dies bedeutet nichts anderes als dass eine Folge genommen wird und eine neue Folge

erstellt wird, bei der jeder Term die Summe der Terme der ursprünglichen Folge bis zu diesem Punkt ist.

3.1 Folgen und Grenzwerte davon

Definition 3.1.1: Folge [Ziltener, 2024]

Eine komplexe Zahlenfolge (oder kurz Folge) ist eine Funktion

𝑎 : ℕ𝑁 := {𝑛 ∈ ℕ|𝑛 ⩽ 𝑁} → ℂ,

wobei 𝑁 ∈ ℕ0. Wir schreiben
𝑎𝑛 := 𝑎(𝑛), (𝑎𝑛) := (𝑎𝑛)𝑛∈ℕ𝑛 := 𝑎.

Wir nennen 𝑛 den Folgenindex und 𝑎𝑛 das 𝑛-te Folgenglied.

Diese Definition ist sehr formell. Die Definition sagt nichts anderes aus als das die Reihe eine Funktion ist, welche
die natürlichen Zahlen von 𝑁 bis unendlich nimmt und dabei eine komplexe Zahl entsteht. (𝑎1 = 2) Des Weiteren
sagt die Definition aus, dass man anstelle von 𝑎(𝑛) 𝑎𝑛 schreiben kann und anstelle von der Funktion, welches (𝑎𝑛)
als Input nimmt 𝑎 schreiben kann.
Der Grund weshalb wir eine Folge als eine Funktion definieren ist, weil wir dann bestimmte ”Werkzeuge” ver-
wenden können. (dom, codom, etc.)

Bemerkung:-

Wir definieren neue Folgen, ausser ausdrücklich gesagt, mit dem Startindex 0.
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Definition 3.1.2: Konvergenz, Grenzwert einer Folge in ℝ oder ℂ [Ziltener, 2024]

(i) Sei 𝐴 ∈ ℂ und (𝑎𝑛)𝑛∈ℕ0
eine komPlexe Zahlenfolge. Wir sagen, dass (𝑎𝑛)𝑛∈ℕ0

gegen 𝐴 konvergiert
genau dann, wenn gilt

∀𝜖 ∈ (0,∞)∃𝑛0 ∈ ℕ0∀𝑛 ∈ ℕ0 : 𝑛 ⩾ 𝑛0 ⇒ |𝑎𝑛 − 𝐴| ⩽ 𝜖.

Wir verwenden dafür die Notationen

(𝑎𝑛)𝑛∈ℕ0
→ 𝐴, 𝑎𝑛 → 𝐴(𝑥 → ∞).

und sagen auch:
”𝑎𝑛 konvergiert gegen 𝐴 für 𝑛 gegen unendlich.”
Falls (𝑎𝑛)𝑛∈ℕ0

→ 𝐴, dann nennen wir 𝐴 den Grenzwert (oder Limes) der Folge (𝑎𝑛)𝑛∈ℕ0
und schreiben

dafür
lim
𝑛→∞

𝑎𝑛 := lim(𝑎𝑛)𝑛∈ℕ0
:= 𝐴.

(ii) Wir sagen, dass eine Folge konvergiert genau dann, wenn es eine komplexe Zahl gibt, wogegen die
Folge konvergiert. Andernfalls sagen wir, dass die Folge divergiert.

In einfachen Worten gesagt bedeutete dies, dass eine Folge konvergiert, wenn man ein Element 𝑛0 in der Folge
finden kann, so das alle Elemente danach innerhalb 𝜖 sind. Sobald die Folge gegen 𝐴 konvergiert, so ist auch 𝐴
der Grenzwert der Folge. Falls die Folge nicht konvergiert divergiert die Folge.

3.2 Konvergenzkriterien

Wir haben im letzten Kapitel gesehen, dass wir zeigen können, dass eine Folge konvergiert, wenn wir ein Element
wählen und dann zeigen können, dass die darauf folgenden Elemente in einem bestimmten Bereich (𝜖) bleibt.
Dies kann sehr aufwendig sein, da man im Voraus wissen muss, zur welcher Zahl die Folge konvergiert. Anhand
von dieser Information muss man das Element bestimmen, deren darauffolgenden Elemente im 𝜖-Bereich bleibt.
Im ersten Augenblick kann es einfach erscheinen. Bedenke aber, dass 𝜖 beliebig klein gewählt werden kann.
Zum Glück gibt es Kriterien, welche dieses Problem vereinfachen.

Definition 3.2.1: Obere und untere Beschränktheit, monotones Wachstum
[Ziltener, 2024]

Wir nennen (𝑎𝑛)𝑛∈ℕ0
nach oben (unten) beschränkt genau dann, wenn die Menge {𝑎𝑛|𝑛 ∈ ℕ0} nach oben

(unten) beschränkt ist.

• Wir nennen (𝑎𝑛)𝑛∈ℕ0
monoton wachsend (fallen) genau dann, wenn gilt

𝑎0 ⩽ 𝑎1 ⩽ 𝑎2 ⩽ ...(𝑎0 ⩾ 𝑎1 ⩾ 𝑎2 ⩾ ...).

Die obige Definition ist ein wenig blöd geschrieben, sagt aber nichts anderes aus als dass es eine Folge nach
oben oder unter beschränkt, sobald es eine Zahl sich annähert oder die Elemente der Folge gleich der Zahl sind.
Des Weiteren gilt, dass eine Folge monoton wachsend oder fallend ist, wenn die darauffolgenden Elemente eines
beliebigen Elementes der Folge grösser, bzw. kleiner oder gleich sind.

Satz 3.2.1 Monotoniekriterium [Ziltener, 2024]

(i) Jede nach oben beschränkte und monoton wachsende reelle Zahlenfolge (𝑎𝑛)𝑛∈ℕ0
konvergiert gegen

sup𝑛∈ℕ0
𝑎𝑛 := sup{𝑎𝑛|𝑛 ∈ ℕ0}.

(ii) Jede nach unten beschränkte und monoton fallende reelle Zahlenfolge (𝑎𝑛)𝑛∈ℕ0
konvergiert gegen

inf𝑛∈ℕ0
𝑎𝑛 := inf{𝑎𝑛|𝑛 ∈ ℕ0}.

Dieser Satz ist die Kernidee zu unserem Problem. Jede Folge, welche monoton wachsend bzw. monoton fallend ist
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und nach oben bzw. nach unten beschränkt ist konvergiert gegen eine Zahl. Diese Zahl ist das Supremum, bzw.
das Infimum der Folge. Dieser Satz ist sehr aussagekräftig, weshalb es für viele Beweise verwendet wird.

Satz 3.2.2 Konvergenz erhalten unter Summe, Produkt und Quotient, Ordnung im Limes enthalten
[Ziltener, 2024]

Seien 𝐴, 𝐵 ∈ ℂ, (𝑎𝑛)𝑛∈ℕ0
eine Folge, die gegen 𝐴 konvergiert, und (𝑏𝑛)𝑛∈ℕ0

eine Folge, die gegen 𝐵 konver-
giert. Dann gilt das Folgende:

(i) (Summe) Die Folge (𝑎𝑛 + 𝑏𝑛)𝑛∈ℕ0
konvergiert gegen 𝐴 + 𝐵.

(ii) (Produkt) Die Folge (𝑎𝑛 · 𝑏𝑛)𝑛∈ℕ0
konvergiert gegen 𝐴 · 𝐵.

(iii) (Quotient) Falls 𝐵 ≠ 0 und 𝑏𝑛 ≠ 0, für jedes 𝑛 ∈ ℕ0, dann konvergiert ( 𝑎𝑛
𝑏𝑛

)𝑛∈ℕ0
gegen

𝐴

𝐵
.

(iv) (Ordnung im Limes enthalten) Wir nehmen an, dass (𝑎𝑛)𝑛∈ℕ0
und (𝑏𝑛)𝑛∈ℕ0

reelle Folgen sind und
dass 𝑎𝑛 ⩽ 𝑏𝑛 , für jedes 𝑛 ∈ ℕ0. Dann gilt 𝐴 ⩽ 𝐵.

Dies ist einer der wichtigsten Sätze in der Analysis und beschreibt die Konvergenz von zwei Folgen, welche
miteinander addiert, multipliziert und dividiert wurde. Einfach gesagt, wenn zwei Folgen miteinander addiert
werden, so werden die Grenzwerte miteinander addiert. Bei der Multiplikation multipliziert und bei der Division
dividiert. Weiterhin ist zu beachten, dass der Grenzwert von einer kleineren Folge nicht unbedingt kleiner sein
muss als der Grenzwert einer grösseren Folge.

Bemerkung:-

Bei der Subtraktion von Folgen konvergiert die neue Folge (𝑎𝑛 − 𝑏𝑛)𝑛∈ℕ0
gegen 𝐴 − 𝐵.

Definition 3.2.2: Eulerische Zahl [Ziltener, 2024]

Wir definieren die Eulersche Zahl als den Grenzwert

𝑒 := lim
𝑛→∞

((1 + 1

𝑛
)𝑛)𝑛∈ℕ = lim

𝑛→∞
(1 + 1

𝑛
)𝑛 .

Diese Zahl ist nach Leonhard Euler benannt.

Bemerkung:-

Die eulerische Zahl 𝑒 ist nicht periodisch.

3.3 Limes superior und inferiorm Folgen in ℝ𝑑, Cauchy-Kriterium

Bevor wir den Limes Superior und Inferior definieren können, müssen wir die erweiterte reelle Zahlengerade
definieren.

Definition 3.3.1: erweiterte reelle Zahlengerade [Ziltener, 2024]

Wir definieren die erweiterte reelle Zahlengerade als die Menge

[−∞,∞] := 𝑅 ∪ {−∞,∞}.

Wir definieren nichts weiter als, dass die erweiterte reelle Zahlengerade alle Zahlen zwischen −∞ und ∞, was auch
die Vereinigung von den ℝ und die menge von {−∞,∞} ist.
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Definition 3.3.2: uneigentliche Konvergenz, uneigentlicher Grenzwert
[Ziltener, 2024]

(i) Sei (𝑥𝑛)𝑛∈ℕ0
eine Folge in [−∞,∞]. Wir nennen (𝑥𝑛)𝑛∈ℕ0

bestimmt divergent gegen ∞ genau dann,
wenn

∀𝐶 ∈ ℝ∃𝑛0 ∈ ℕ0 : 𝑛 ⩾ 𝑛0 ⇒ 𝑥𝑛 ⩾ 𝐶.

In diesem Fall nennen wir ∞ den uneigentlichen Grenzwert von (𝑥𝑛)𝑛∈ℕ0
und schreiben

lim(𝑥𝑛)𝑛∈ℕ0
= ∞.

(ii) Wir definieren bestimmte Divergenz gegen −∞ und den uneigentlichen Grenzwert −∞ analog.

Der erste Punkt der vorherigen Definition sagt nichts weiteres aus, als dass eine Folge bestimmt divergent ist,
wenn ein Element der Folge grösser ist als eine beliebige reelle Zahl. Dadurch wissen wir, dass die Folge gegen ∞
wächst und deren uneigentlicher Grenzwert ∞ ist.
Der zweite Punkt besagt, dass die bestimmte Divergenz gegen −∞, sowie der uneigentliche Grenzwert −∞ analog
zur bestimmten Divergenz gegen ∞ bzw. der uneigentliche Grenzwert ∞ definiert werden kann.

Definition 3.3.3: bestimmte Divergenz gegen −∞, uneigentlicher Grenzwert −∞

Sei (𝑥𝑛)𝑛∈ℕ0
eine Folge in [−∞,∞]. Wir nennen (𝑥𝑛)𝑛∈ℕ0

bestimmt divergent gegen −∞ genau dann, wenn

∀𝐶 ∈ ℝ∃𝑛0 ∈ ℕ0 : 𝑛 ⩾ 𝑛0 ⇒ 𝑥𝑛 ⩽ 𝐶.

Des weiteren bemerkt man, dass in der Definition von Herr Ziltener die uneigentliche Konvergenz nicht explizit
definiert wird. Man kann es sich aber wie folgt vorstellen: die eigentliche Konvergenz ist, wenn eine Folge bestimmt
gegen eine reelle Zahl divergiert. Sobald eine Folge bestimmt gegen ∞ oder −∞ konvergiert, so ist dies eine
uneigentliche Konvergenz.

Definition 3.3.4: Limes superior und inferior [Ziltener, 2024]

(i) Wir definieren den Limes superior von (𝑎𝑛)𝑛∈ℕ0
als

lim sup
𝑛→∞

𝑎𝑛 := lim sup(𝑎𝑛)𝑛∈ℕ0
:= lim

𝑛→∞
sup

𝑖∈ℕ0:𝑖⩾𝑛
𝑎𝑖 ∈ [−∞,∞].

(ii) Wir definieren den Limes inferior von (𝑎𝑛)𝑛∈ℕ0
als

lim inf
𝑛→∞

𝑎𝑛 := lim inf(𝑎𝑛)𝑛∈ℕ0
:= lim

𝑛→∞
inf

𝑖∈ℕ0:𝑖⩾𝑛
𝑎𝑖 ∈ [−∞,∞].

In einfachen Worten gesagt ist der Limes superior der grösste Wert, welche die Folge sich annähert bzw. unendlich
oft annähert, falls die Folge oszilliert. Der Limes inferior ist der kleinste Wert, welche die Folge annähert bzw.
unendlich oft annähert.
Der Limes superior bzw. inferior wird deswegen auch Häufungspunkte genannt.

Bemerkung:-

lim inf 𝑎𝑛 ⩽ lim sup 𝑎𝑛

Definition 3.3.5: Konvergenzm Grenzwert einer Folge in ℝ𝑑 [Ziltener, 2024]

Wir sagenm dass die Folge (𝑎𝑛)𝑛∈ℕ0
gegen 𝐴 konvergiert genau dann, wenn

∀𝜖(0,∞)∃𝑛0 ∈ ℕ0∀𝑛 ∈ ℕ0 : 𝑛 ⩾ 𝑛0 ⇒ ||𝑎𝑛 − 𝐴|| ⩽ 𝜖.

In diesem Fall nennen wir 𝐴 den Grenzwert (oder Limes) der Folge (𝑎𝑛)𝑛∈ℕ0
.

In Kapitel 3.1 haben wir gesehen, dass eine Folge konvergiert sobald ein Teil seiner Elemente sich in einem 𝜖
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befinden. Wir haben nun die Definition auf mehrere Dimensionen erweitert. Wenn man ein beliebiges Element 𝑛0
einer Folge wählt und ein 𝜖 findet, welches der Radius vom Ball um 𝐴 ist und dieser Ball alle darauffolgenden
Elemente von 𝑛0 umschliesst, so konvergiert die Folge gegen 𝐴. Somit ist 𝐴 der Grenzwert oder Limes von der
Folge.

Definition 3.3.6: Cauchy-Folge [Ziltener, 2024]

Eine komplexe Zahlenfolge (𝑎𝑛)𝑛∈ℕ0
heisst Cauchy-Folge genau dann, wenn

∀𝜖 ∈ (0,∞)∃𝑛0 ∈ ℕ0∀𝑚, 𝑛 ∈ ℕ0 : 𝑚, 𝑛 ⩾ 𝑛0 ⇒ |𝑎𝑚 − 𝑎𝑛| ⩽ 𝜖.

Die Cauchy-Folge ist eine Folge, bei der der Abstand der Folgenglieder mit zunehmenden Folgeindex immer kleiner
werden.

3.4 Reihen

Definition 3.4.1: Reihe [Ziltener, 2024]

Für jedes 𝑛 ∈ ℕ0 definieren wir die n-te Partialsumme der Folge (𝑎𝑘)𝑘∈ℕ0
als die Summe

𝑠𝑛 :=

𝑛∑
𝑘=0

𝑎𝑘 = 𝑎0 + ... + 𝑎𝑛 .

Wir definieren die zu (𝑎𝑘)𝑘 ∈ ℕ0 gehörende Reihe (oder Folge der Partialsummen) als die Folge

(𝑠𝑛)𝑛∈ℕ0
.

Falls diese Folge konvergiert, dann definieren wir

𝑎0 + 𝑎1 + ... :=
∞∑
𝑘=0

𝑎𝑘

:= lim(𝑠𝑛)𝑛∈ℕ0

= lim
𝑛→∞

𝑛∑
𝑘=0

𝑎𝑘

.

In einfachen Worten gesagt ist eine Reihe eine Folge, bei denen die Elemente die Partialsummen bis zum n-ten
Elemente der ursprünglichen Folge ist. (𝑠0 = 𝑎0 , 𝑠1 = 𝑎0+𝑎1 , ...) Eine Reihe konvergiert, sobald die Partialsummen
sich einer Zahl annähern wie bei einer ”normalen” Reihe.
Da eine Reihe eine Folge ist, gelten dieselben Konvergenzkriterien von Folgen auch für Reihen.

Bemerkung:-

• Falls die Reihe

(
𝑠𝑛 =

𝑛∑
𝑘=0

𝑎𝑘

)
konvergiert, dann konvergiert die Folge (𝑎𝑘)𝑘∈ℕ0

gegen 0. [Ziltener, 2024]

Satz 3.4.1 Quotentenkriterium für die Konvergenz einer Reihe [Ziltener, 2024]

Wir nehmen an, dass 𝑎𝑘 ≠ 0, für jedes 𝑘 ∈ ℕ0.

(i) Die Reihe

( 𝑛∑
𝑘=0

𝑎𝑘

)
𝑛∈ℕ0

konvergiert, falls

lim sup
𝑘→∞

���� 𝑎𝑘+1𝑎𝑘
���� < 1.
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(ii) Die Reihe

( 𝑛∑
𝑘=0

𝑎𝑘

)
𝑛∈ℕ0

divergiert, falls

lim inf
𝑘→∞

���� 𝑎𝑘+1𝑎𝑘
���� > 1.

Der Satz sagt besagt, dass wenn, je weiter man in die Reihe fortschreitet (wenn 𝑘 gegen unendlich geht), das
Verhältnis des Absolutbetrags des nächsten Elements zum aktuellen Element schliesslich unter 1 bleibt, dann
konvergiert die Reihe. Wenn, je weiter man in die Reihe fortschreitet (wenn 𝑘 gegen undendlich geht), das
Verhältnis des Absolutbetrags des nächsten Elementes zum aktuellen Element schliesslich über 1 bleibt, dann
divergiert die Reihe.

Bemerkung:-

Falls lim inf
𝑘→∞

���� 𝑎𝑘+1𝑎𝑘
���� = lim inf

𝑘→∞

���� 𝑎𝑘+1𝑎𝑘
���� = 1 dann ist es unklar ob die Reihe konvergiert oder divergiert. Genau

dasselbe gilt, wenn die Reihe oszilliert.

Definition 3.4.2: Exponentialreihe [Ziltener, 2024]

Wir definieren die Exponentialreihe zu 𝑧 als die zur Folge

(
𝑎𝑘 :=

𝑧𝑘

𝑘!

)
𝑘∈ℕ0

gehörige Reihe, also die als die

Folge

( 𝑛∑
𝑘=0

𝑧𝑘

𝑘!

)
𝑛∈ℕ0

.

Die obige Definition definiert nichts weiter als 𝑒𝑧 = 1 + 𝑧 + 𝑧2

2
+ 𝑧3

6
+ .... Die nächste Definition macht mehr oder

weniger dasselbe, bloss auf einer sehr formellen Ebene.

Definition 3.4.3: komplexe Exponentialfunktion [Ziltener, 2024]

Wir definieren die (komplexe) Exponentialfunktion als die Funktion

Exp := exp : ℂ → ℂ, exp(𝑧) :=
∞∑
𝑘=0

𝑧𝑘

𝑘!
= lim
𝑛→∞

𝑛∑
𝑘=0

𝑧𝑘

𝑘!

Satz 3.4.2 Wurzelkriterium für die Konvergenz einer Reihe [Ziltener, 2024]

(i) Die Reihe

( 𝑛∑
𝑘=0

𝑎𝑘

)
𝑛∈ℕ0

konvergiert, falls

lim sup
𝑘→∞

𝑘
√
|𝑎𝑘 | < 1.

(ii) Die Reihe

( 𝑛∑
𝑘=1

)
𝑛∈ℕ0

divergiert, falls

lim sup
𝑘→∞

𝑘
√
|𝑎𝑘 | > 1.

Das Wurzelkriterium wird verwendet, um oszillierende Reihen, bzw. Reihen deren Quotientenregel 1 ergibt ihre

Konvergenz bzw. Divergenz zu beweisen. Falls ab einem Element der Reihe lim sup
𝑘→∞

𝑘
√
|𝑎𝑘 | < 1 so konvergiert die
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Reihe. Ist lim sup
𝑘→∞

𝑘
√
|𝑎𝑘 | > 1 so divergiert die Reihe.

Definition 3.4.4: Potenzreihe, Konvergenzbereich, -Radius, -Kreisscheibe
[Ziltener, 2024]

(i) Wir definieren die zu (𝑐𝑘)𝑘∈ℕ0
gehörige (komplexe) Potenzreihe als die Abbildung

ℂ ∋ 𝑧 ↦→
( 𝑛∑
𝑘=0

𝑐𝑘𝑧
𝑘

)
𝑛∈ℕ0

∈ {Folge in ℂ}.

Wir nennen 𝑐𝑘 den k-ten Koeffizienten der Potenzreihe.

(ii) (Konvergenzbereich) Wir definieren:

Konvergenzbereich der Potenzreihe 𝑧 ↦→
( 𝑛∑
𝑘=0

𝑐𝑘𝑧𝑘)𝑛∈ℕ0

:= zur Koeffizientenfolge (𝑐𝑘)𝑘∈ℕ0
gehörigen Konvergenzbereich

:=

{
𝑧 ∈ ℂ

����( 𝑛∑
𝑘=0

𝑐𝑘𝑧
𝑘

)
𝑛∈ℕ0

konvergiert

}
,

(iii) (Konvergenzradius) Wir definieren:

Konvergenzradius der Potenzreihe 𝑧 ↦→
( 𝑛∑
𝑘=0

𝑐𝑘𝑧
𝑘

)
𝑛∈ℕ0

:= zur Koeffizientenfolge 𝑐 = (𝑐𝑘)𝑘∈ℕ0
gehörigen Konvergenzradius

:= 𝜌
:= 𝜌𝑐

:=
1

lim sup𝑘→∞
𝑘
√
|𝑐𝑘 |

∈ [0,∞] := [0,∞) ∪ {∞}

(iv) (Konvergenzkreisscheibe) Wir definieren:

Konvergenzkreisscheibe der Potenzreihe 𝑧 ↦→
( 𝑛∑
𝑘=0

𝑐𝑘𝑧
𝑘

)
𝑛∈ℕ0

:= zur Koeffizientenfolge (𝑐𝑘)𝑘∈ℕ0
gehörige Konvergenzkreisscheibe

:= 𝐵2
𝜌(0)

Bemerkung:-

Im Vergleich zu den Notizen von Herr Ziltener habe ich die Definitionen von Konvergenzbereich, Konvergenz-
radius und Konvergenzradius in separate Punkte genommen, um es übersichtlicher zu machen und damit man
einfacher durch die Punkte gehen kann.

Was ist eine Potenzreihe? Eine Potenzreihe kann man sich vorstellen wie eine unendlich lange Potenzfunktion. 𝑐𝑘
ist jeweils der Parameter vor der gesuchten variablen 𝑧 mit der 𝑘-ten Potenz. (𝑐2 · 𝑧2 + 𝑐1 · 𝑧 + 𝑐0)
Der Konvergenzbereich kann man sich wie ein offener Ball vorstellen. Dieser Ball besteht aus komplexen Zahlen,
die, wenn in die Potenzreihe eingesetzt, eine komplexe Zahl wieder ausgibt als Lösung. Die eingesetzten komplexe
Zahlen können gleich der Lösung sein (Fixpunkt), müssen aber nicht.
Der Konvergenzradius ist der Radius vom offenen Ball, welcher den Konvergenzbereich einschliesst. Dabei haben
wir bestimmte Regeln.

1. Wenn der Konvergenzradius 𝜌 = 0, so konvergiert die Potenzreihe nur bei 𝑧 = 0.

2. Wenn der Konvergenzradius 𝜌 = ∞, so konvergiert die Potenzreihe für alle 𝑧.
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Die Konvergenzkreisscheibe ist der offene Ball, welcher den Konvergenzbereich mit den Konvergenzradius ein-
schliesst aber der Konvergenzbereich muss nicht zwingend komplett eingeschlossen sein. Was ist der Unterschied
zwischen den beiden Terminologien? Der Konvergenzbereich kann Punkte auf der Sphäre des offenen Balls haben,
welche die dom der Potenzreihe sind. Da die Sphäre komplexe Zahlen enthalten kann, welche nicht dom von der
Potenzreihe sind, wird diese ausgeschlossen.

Satz 3.4.3 Konvergenzbereich einer Potenzreihe, Konvergenzradius [Ziltener, 2024]

(i) Die Reihe

( 𝑛∑
𝑘=0

𝑐𝑘𝑧
𝑘

)
|𝑛∈ℕ0

konvergiert für jedes 𝑧 ∈ ℂ, sodass |𝑧| < 𝜌.

(ii) Die Reihe

( 𝑛∑
𝑘=0

𝑐𝑘𝑧
𝑘

)
𝑛∈ℕ0

divergiert für jedes 𝑧 ∈ ℂ, sodass |𝑧| > 𝜌.

Dieser Satz sagt nichts Weiteres aus als, dass alle Punkte innerhalb der Konvergenzkreisscheibe mit Konvergenz-
radius 𝜌 die dom von der Potenzreihe sind, was dazu führt, dass die Potenzreihe konvergiert. Alles ausserhalb der
Konvergenzkreisscheibe lässt die Potenzreihe divergieren oder oszillieren.

Definition 3.4.5: alternierende Folge, alternierende Reihe [Ziltener, 2024]

Wir nennen die zu (𝑎𝑘)𝑘∈ℕ0
alternierend genau dann, wenn

∀𝑘 ∈ ℕ0 : (−1)𝑘𝑎𝑘 ⩾ 0 oder ∀𝑘 ∈ ℕ0 : (−1)𝑘𝑎𝑘 ⩽ 0

Wir nennen die zu (𝑎𝑘)𝑘∈ℕ0
gehörige Reihe alternierend genau dann, wenn (𝑎𝑘)𝑘∈ℕ0

alternierend ist.

Die obige Definition ist eine sehr formelle Art und Weise eine alternierende Folge bzw. Reihe zu beschreiben.
Einfach gesagt ist eine Folge oder Reihe alternierend, wenn alle Elemente mit einem ungeraden Index grösser 0
sind und alle Elemente mit einem geraden Index kleiner 0 sind. Es kann natürlich auch umgekehrt sein.

Satz 3.4.4 Konvergenzkriterium von Leibniz für alternierende Reihen [Ziltener, 2024]

Sei (𝑎𝑘)𝑘∈ℕ0
eine monoton fallende Folge inℝ, die gegen 0 konvergiert. Dann konvergiert die zu ((−1)𝑘𝑎𝑘)𝑘∈ℕ0

gehörige Reihe, also Folge

(
𝑠𝑛 :=

𝑛∑
𝑘=0

(−1)𝑘𝑎𝑘
)
𝑛∈ℕ0

.

Der obere Satz sagt aus, dass wenn man aus den Beträgen von den Elementen einer alternierenden Reihe eine
neue Reihe bildet und dies monoton fallend ist und gegen 0 konvergiert, dann konvergiert die alternierende Reihe.

3.5 Absolute Summierbarkeit einer Folge, absolute Konvergenz einer
Reihe

Definition 3.5.1: absolut summierbar, absolut konvergent [Ziltener, 2024]

Wir nennen (𝑎𝑘)𝑘∈ℕ0
absolut summierbar genau dann, wenn die zu (||𝑎𝑘 ||)𝑘∈ℕ0

gehörige Reihe, also die

Folge

( 𝑛∑
𝑘=0

||𝑎𝑘 ||
)
𝑛∈ℕ0

konvergiert.

In diesem Fall nennen wir die zu (𝑎𝑘)𝑘∈ℕ0
gehörige Reihe, also die Folge

( 𝑛∑
𝑘=0

||𝑎𝑘 ||
)
𝑛∈ℕ0

, absolut konver-

gent.

Die Definition sagt nichts Weiteres aus, als dass wenn man aus der ursprünglichen Folge eine Reihe bildet beste-
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hend aus der euklidischen Norm der Elemente der Folge

( 𝑛∑
𝑘=0

||𝑎𝑘 ||
)
𝑛∈ℕ0

und diese Reihe konvergiert, so ist die

Folge absolut summierbar.
Falls die Folge absolut summierbar ist, dann ist die Reihe, welche aus der Folge gebildet wird absolut konvergent.

Satz 3.5.1 absolute Summierbarkeit und Umordung [Ziltener, 2024]

Falls die Folge (𝑎𝑘)𝑘∈ℕ0
absolut summierbar istm dann konvergiert für jede bijektive Abbildung 𝜑 : ℕ0 →

ℕ0 die zur Folge (𝑎𝜌(𝑗))𝑗∈ℕ0
gehörige Reihe, und es gilt

∞∑
𝑗=0

𝑎𝜌(𝑗) =
∞∑
𝑘=0

𝑎𝑘 .

Einfach gesagt sagt der Satz aus, dass wenn man die Elemente einer absolut summierbaren Reihe nimmt und
eine neue Reihe bildet, welche nicht die gleiche Reihenfolge hat, dann ist die Summe der ursprünglichen und der
neuen Reihe gleich. Dies bedeutet auch, dass die neue Reihe konvergiert.

Definition 3.5.2: Faltungm Cauchy-Produkt [Ziltener, 2024]

(i) Wir definieren die Faltung (oder das Faltungsprodukt) von 𝑎 und 𝑏 als die Folge

𝑎 ∗ 𝑏 : ℕ0 → ℂ (𝑎 ∗ 𝑏)𝑚 := (𝑎 ∗ 𝑏)(𝑚) :=
∑

𝑘,𝑙∈ℕ0:𝑘+𝑙=𝑚
𝑎𝑘𝑏𝑙 =

𝑚∑
𝑘=0

𝑎𝑘𝑏𝑚−𝑘

(ii) Wir definieren das Cauchy-Produkt der zu 𝑎 und 𝑏 gehörigen Reihen als die zur gefalteten Folge 𝑎 ∗𝑏
gehörigen Reihe, also

Cauchy-Produkt von

( 𝐾∑
𝑘=0

𝑎𝑘

)
𝐾∈ℕ0

und

( 𝐿∑
𝑙=0

𝑏𝑙

)
𝐿∈ℕ0

:=

( 𝑀∑
𝑚=0

(𝑎 ∗ 𝑏)𝑚 =

𝑚∑
𝑘=0

𝑎𝑘𝑏𝑚−𝑘

)
𝑀∈ℕ0

.

In einfachen Worten gesagt ist die Faltung eine neue Folge. Jedes Element dieser neuen Folge entsteht, indem
man Produkte von Elementen der beiden ursprünglichen Folgen summiert. Dabei ist die Summe so gebildet, dass
die Indizes der multiplizierten Elemente sich immer zum Index des neuen Elements addieren.
Das Cauchy-Produkt zweier Folgen ist eine Reihe, deren Elemente die Summe der Faltungen der Folgen sind.

Satz 3.5.2 Cauchy-Produkt zweier Reihen [Ziltener, 2024]

Seien 𝑎 = (𝑎𝑘)𝑘∈ℕ0
und 𝑏 = (𝑏𝑙)𝑙∈ℕ0

absolut summierbare Folgen in ℂ. Dann sit die Fatung 𝑎 ∗ 𝑏 absolut
summierbar, und es gilt

∞∑
𝑚=0

(𝑎 ∗ 𝑏)𝑚 = lim
𝑛→∞

𝑛∑
𝑚=0

(𝑎 ∗ 𝑏)𝑚 =

∞∑
𝑘=0

𝑎𝑘 ·
∞∑
𝑙=0

𝑏𝑙 .

Der obige Satz sagt nichts Weiteres aus als, dass falls zwei Folgen absolut summierbar sind, dann ist die Reihe,
welche durch die Faltung der beiden Folgen entsteht absolut summierbar. Des Weiteren gilt, dass die Summe der
Faltung der Folgen genau gleich den Produkten der Reihen ist.

3.6 Die Exponentialfunktion und die trigonometrischen Funktionen
Kosinus und Sinus

In Kapitel 3.2 haben wir die eulerische Zahl 𝑒 definiert. Mit dieser Zahl können wir die Exponentialfunktion
definieren.
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Definition 3.6.1: Exponentialfunktion

Sei 𝑥 ∈ ℚ. Die Exponentialfunktion ist definiert als

𝑒𝑥 = exp(𝑥).

In diesem Kapitel werden wir die Definition erweitern mit komplexen Potenzen.

Definition 3.6.2: komplexe Potenz von 𝑒 [Ziltener, 2024]

Wir definieren
𝑒𝑧 := exp(𝑧).

Mit der komplexen Exponentialfunktion können wir nun einen Zusammenhang zur Kosinus- und Sinusfunktion
bilden.

Definition 3.6.3: Kosinus- und Sinusreihe [Ziltener, 2024]

Wir definieren die Kosinusreihe zu 𝑧 als die zur Folge

(
(−1)𝑗𝑧2𝑗
(2𝑗)!

)
𝑗∈ℕ0

gehörige Reihe, also die Folge( 𝑚∑
𝑗=0

(−1)𝑗𝑧2𝑗
(2𝑗)!

)
𝑚∈ℕ0

.

Wir definieren die Sinusreihe zu 𝑧 als die zur Folge

(
(−1)𝑗𝑧2𝑗+1
(2𝑗 + 1)!

)
𝑗∈ℕ0

gehörige Reihe, also die Folge( 𝑚∑
𝑗=0

(−1)𝑗𝑧2𝑗+1
(2𝑗 + 1)!

)
𝑚∈ℕ0

.

Bemerkung:-

Die Kosinus- und Sinusreihe konvergiert laut dem Quotientenkriterium.

Bemerkung:-

Cos und Sin mit grossen Anfangsbuchstaben sind die Kosinus- bzw. Sinusreihe gemeint.
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Kapitel 4

Stetigkeit, Topologie

4.1 Stetigkeit

Seien 𝑛, 𝑛′ ∈ ℕ, 𝑆 ⊆ ℝ𝑛 , 𝑆′ ⊆ ℝ𝑛′ und 𝑓 : 𝑆 → 𝑆′ eine Funktion.

Definition 4.1.1: Stetigkeit [Ziltener, 2024]

(i) Sei 𝑥0 ∈ 𝑆. 𝑓 heisst an der Stelle 𝑥0 stetig genau dann, wenn

∀𝜖 ∈ (0,∞)∃𝛿 ∈ (0,∞)∀𝑥 ∈ 𝑆 : ||𝑥 − 𝑥0|| ⩽ 𝛿 ⇒ || 𝑓 (𝑥) − 𝑓 (𝑥0)|| ⩽ 𝜖.

(ii) 𝑓 heisst stetig genau dann, wenn an jeder Stelle seines Definitionsbereiches stetig ist.

Gehen wir die einzelnen Punkte der obigen Definition durch. Wir wählen ein 𝑥0, welches dom( 𝑓 ) ist und einen
weiteres 𝑥, welches einen Abstand ⩽ 𝛿 zu 𝑥0 hat. Wenn ℑ( 𝑓 ) von 𝑥0 und 𝑥 einen Abstand ⩽ 𝜖 hat, so wissen wir,
dass die Funktion an Punkt 𝑥0 stetig ist. Falls alle Punkte der Funktion stetig sind, so ist die komplette Funktion
stetig.

Bemerkung:-

Die Funktion 𝑓 ist an der Stelle 𝑥0 unstetig, d.h. nicht stetig genau dann, wenn gilt

∃𝜖 ∈ (0,∞)∀𝛿 ∈ (0,∞)∃𝑥 ∈ 𝑆 : ||𝑥 − 𝑥0|| ⩽ 𝛿 ∧ || 𝑓 (𝑥) − 𝑓 (𝑥0)|| > 𝜖.

[Ziltener, 2024]
In anderen Worten: Falls die Funktion eine Stelle hat an denen der Wert sprungartig sich ändert, so ist die
Funktion nicht stetig.

Satz 4.1.1 Stetigkeit, Rechenoperationen, Komponenten [Ziltener, 2024]

(i) Addition, Subtraktion, Multiplikation und Division komplexer Zahlen sind stetige Funktionen.

(ii) Seien 𝑛 ∈ ℕ, 𝑆 ⊆ ℝ𝑛 , 𝑓 , 𝑔, : 𝑆 → ℂ, 𝑎 ∈ ℂ und 𝑥0 ∈ ℂ, sodass 𝑓 und 𝑔 in 𝑥0 stetig sind. Dann sind

die Funktionen 𝑓 + 𝑔, 𝑎 · 𝑓 , 𝑓 · 𝑔 in 𝑥0 stetig. Falls 𝑔(𝑥0) ≠ 0, dann ist die Funktion
𝑓

𝑔
in 𝑧0

stetig. (Diese Funktion ist auf der Menge aller 𝑥 ∈ 𝑆 definiert, wofür 𝑔(𝑥) ≠ 0.)

(i) Seien 𝑛, 𝑛′ ∈ ℕ, 𝑆 ⊆ ℝ𝑛 , 𝑆′ ⊆ ℝ𝑛′ , 𝑓 = ( 𝑓1 , ..., 𝑓𝑛′ : 𝑆 → 𝑆′ und 𝑥0 ∈ 𝑆. Die Funktion 𝑓 ist in 𝑥0 stetig
genau dann, wenn für jedes 𝑖 ∈ {1, ...𝑛′} die Funktion 𝑓𝑖 in 𝑥0 stetig ist.

Der obige Satz sagt nichts weiteres aus, als dass Rechenoperationen in den komplexen Zahlen stetig sind. Des
Weiteren sind Rechenoperationen von stetigen Funktionen ebenfalls an Punkt 𝑥0 stetig. Schlussendlich ist eine
Funktion 𝑓 bestehend aus Vektoren nur dann stetig, wenn jeder Vektor der Funktion 𝑓 in 𝑥0 stetig ist.
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Definition 4.1.2: Polynom in mehreren Veränderlichen [Ziltener, 2024]

Eine Funktion 𝑓 : ℝ𝑛 → ℝ heisst Polynom (auf ℝ𝑛) genau dann, wenn sie eine (endliche) Linearkombi-
nation von Funktionen der Form

𝑥 ↦→ 𝑥𝑎11 · · · 𝑥𝑎𝑛𝑛
ist, wobei 𝑎1 , ..., 𝑎𝑛 ∈ ℕ0. (𝑥𝑖 bezeichnet die 𝑖-te Komponente von 𝑥 ∈ ℝ𝑛 .) Der Grad des Polynoms 𝑓 ist
die grösste Zahl 𝑎1+· · ·𝑎𝑛 , sodass der Term 𝑥𝑎11 · · · 𝑥𝑎𝑛𝑛 in 𝑓 (mit einem nichtverschwindenden Koeffizienten)
auftritt.

Wir definieren nun in einfachen Worten gesagt die Polynomfunktion. Eine Funktion wird als eine Polynomfunktion
bezeichnet, wenn sie als eine Summe von Termen der Form 𝑥𝑎11 ···𝑥𝑎𝑛𝑛 geschrieben werden kann. 𝑥1...𝑥𝑛 sind Monome
und sind die Elemente eines Vektors und können aus beliebig vielen Variablen bestehen. (𝑥, 𝑥𝑦, 𝑧𝑥𝑦, etc.) 𝑥𝑖 ist
die 𝑖-te Komponente des Vektors. 𝑎𝑖 ist die Potenz und kann eine positive Zahl inklusive 0 sein. Wichtig zu
erwähnen ist noch, dass der Grad der Polynomfunktion die grösste Summe der Potenzen eines Monoms ist.

Bemerkung:-

Verknüpfte Funktionen, welche in 𝑥0 stetig sind, sind verknüpft auch stetig.

Bemerkung:-

Die Wurzelfunktion ist stetig.

Bemerkung:-

Eine Funktion, welche durch eine Potenzreihe definiert ist, ist stetig.

4.2 Topologie, innerer Punkt, Inneres, Offen- und Abgeschlossenheit
einer Menge, Rand, Konvergenz einer Funktion an einer Stelle

Dieses Kapitel ist sehr ähnlich zum Kapitel 1.2.2. In diesem Kapitel werden wir die Topologie von Mengen
besprechen.
Die Topologie beschreibt im Wesentlichen, ob eine Menge zusammenhängend ist oder nicht. Wir werden später
im Kapitel sehen, was dies bedeutet.

Definition 4.2.1: innerer Punkt, Inneres, Offenheit [Ziltener, 2024]

(i) Ein Punkt 𝑥 ∈ 𝑆 heisst innerer Punkt von 𝑆 genau dann, wenn es ein 𝑟 ∈ (0,∞) gibt, sodass

𝐵𝑛𝑟 (𝑥) ⊆ 𝑆.

Wir definieren Int 𝑆, dass Innere von 𝑆 (oder den offenen Kern von 𝑆), als die Menge aller ihrer
inneren Punkte,

Int 𝑆 := Int(𝑆) := 𝑆−◦ := {innerer Punkt von 𝑆}.

(ii) 𝑆 heisst offen (in ℝ𝑛) genau dann, wenn jeder Punkt von 𝑆 ein innerer Punkt ist.

Bemerkung:-

Das Innere von 𝑆 ist in 𝑆 enthalten.
Int𝑆 ⊆ 𝑆.

[Ziltener, 2024]

Ein innerer Punkt ist ein Punkt 𝑥 dessen offener Ball (Ball ohne Rand) mit einem beliebig gewählten Radius sich
innerhalb der Menge 𝑆 befindet. Das Innere einer Menge ist ein verallgemeinerter offener Ball. Die Menge muss
nicht einen Radius haben, sondern kann ein beliebig geformte Menge sein.
In der vorherigen Definition wird auch die offene Menge erwähnt. Die offene Menge besteht nur aus inneren
Punkten, also Punkte, deren offener Ball sich innerhalb der Menge 𝑆 befindet.
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Definition 4.2.2: Vereinigung, Durchschnitt [Ziltener, 2024]

Sei 𝒮 eine Kollektion, also eine Menge von Mengen.

(i) Wir definieren
⋃

𝒮 , die Vereinigung von 𝒮 (oder Vereinigungsmenge von 𝒮 oder Vereinigung aller

Elemente von 𝒮) als die Menge aller Objekte, die Element (mindestens) eines Elementes von 𝒮 sind,
d.h. ⋃

𝒮 :=
⋃
𝑆∈𝒮

𝑆 := {𝑥|∃𝑆 ∈ 𝒮 : 𝑥 ∈ 𝑆}.

(ii) Wir nehmen jetzt an, dass 𝒮 nicht leer ist. Wir definieren
⋂

𝒮, den (Durch-)Schnitt von 𝒮 (oder

Schnittmenge von 𝒮 oder Schnitt aller Elemente von 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝑆) als die Menge aller Objekte, die
Element aller Elemente von 𝒮 sind, d.h.⋂

𝒮 :=
⋂
𝑆∈𝒮

𝑆 := {𝑥|∀𝑆 ∈ 𝒮 : 𝑥 ∈ 𝑆}.

Die Vereinigung einer Kollektion
⋃

𝒮 kann man verstehen als die Gruppierung von allen Elementen (also Mengen)

der Kollektion zu einer neuen Menge. Beachte dabei, dass Elemente sich nicht wiederholen können.

Der Schnitt einer Kollektion
⋂

𝒮 kann man verstehen als die Gruppierung von den Elementen der Mengen der

Kollektion zu einer neuen Menge, bei der die Elemente in allen Mengen der Kollektion vorkommt.

Satz 4.2.1 Eigenschaften offener Mengen [Ziltener, 2024]

Es gilt:

(i) ∅,ℝ𝑛 sind offen in ℝ𝑛 .

(iI) Der Durchschnitt endlich vieler offener Mengen ist offen.

(iii) Jede Vereinigung offener Mengen ist offen.

Definition 4.2.3: Abgeschlossenheit [Ziltener, 2024]

Eine Teilmenge 𝐴 ⊆ ℝ𝑛 heisst abgeschlossen (in ℝ𝑛) genau dann, wenn ihr Komplement 𝐴𝑐 = ℝ𝑛

𝐴 offen ist.

Eine Menge ist abgeschlossen, wenn die Menge bestehend aus den Punkten ausserhalb der ursprünglichen Menge
offen ist.

Bemerkung:-

Die Eigenschaften abgeschlossener Mengen entspricht auch den Eigenschaften offener Mengen.

Definition 4.2.4: Abschluss [Ziltener, 2024]

Wir definieren den Abschluss von 𝑆 als den Durchschnitt aller abgeschlossenen Obermengen von 𝑆.

𝑆̄ := clos(𝑆) :=
⋂

𝐴⊆ℝ𝑛 abgeschlossen: 𝑆⊆𝐴
𝐴.

Einfach gesagt ist der Abschluss einer Menge die kleinste Obermenge, welche die Urspüngliche Menge einsch-
liesst. Diese kleinste Obermenge besteht aus der Schnittmenge aller Obermengen, welche die urspüngliche Menge
einschliesst.
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Satz 4.2.2 Charakterisierung des Inneren und des Abschlusses [Ziltener, 2024]

Für jede Teilmenge 𝑆 ⊆ ℝ𝑛 gilt:

(i) Das Innere von 𝑆 ist die Vereinigung aller offenen Teilmengen von 𝑆,

Int𝑆 = 𝑆◦ =
⋃

𝑈⊆ℝ𝑛 offen 𝑈⊆𝑆
𝑈.

(ii) Der Abschluss von 𝑆 ist gegeben durch

𝑆̄ = {𝑥 ∈ ℝ𝑛|∃(𝑥𝑘)𝑘∈ℕ : Folge in 𝑆 : 𝑥𝑘 → 𝑥(𝑘 → ∞)}.

Wir haben gelernt, dass das Innere einer Menge alle Punkte innerhalb von der Menge ausser dem Rand sind.
Diese Definition können wir auf eine Obermenge erweitern. Das Innere einer Obermenge ist die Vereinigung aller
offenen Mengen, welche sich innerhalb der Obermenge befinden.
Der Abschluss kann man sich vorstellen wie der Konvergenzbereich. (Kapitel 3.4) Anstelle das man nur das Innere
des Konvergenzbereiches und ein paar Punkte auf den Rand miteinbezieht, sind auch die Punkte auf den Rand,
welche nicht im Konvergenzbereich sind mitenthalten.

Definition 4.2.5: Rand [Ziltener, 2024]

Wir definieren 𝜕𝑆, den (topologischen) Rand von 𝑆 als das Komplement des Inneren von 𝑆 im Abschluss
von 𝑆,

𝜕𝑆 := 𝑆̄ \ Int𝑆.

In anderen Worten ist der Rand von einer Menge 𝜕𝑆 nichts weiter als der Abschluss ohne das Innere.

Definition 4.2.6: Konvergenz und Grenzwert einer Funktion [Ziltener, 2024]

Wir sagen, dass die Funktion 𝑓 an der Stelle 𝑥0 gegen 𝑦0 konvergiert genau dann, wenn

∀𝜖 ∈ (0,∞)∃𝛿 ∈ (0,∞)∀𝑥 ∈ 𝑋 : ||𝑥 − 𝑥0|| ⩽ 𝛿 ⇒ || 𝑓 (𝑥) − 𝑦0|| ⩽ 𝜖.

In diesem Fall nennen wir 𝑦0 den Grenzwert von 𝑓 an der Stelle 𝑥0 und wir schreiben

lim
𝑥→𝑥0

𝑓 (𝑥) := lim
𝑥0

𝑓 := 𝑦0.

Die obige Definition wird umgangsprachlich auch das Epsilon-Delta Kriterium genannt. Es besagt, dass wenn wir
eine beliebige (noch so kleine) Toleranzgrenze (𝜖) für die Ausgabe 𝑓 (𝑥) um den potentiellen Grenzwert 𝑦0 festlegen
(d.h., wir definieren ein Intervall/Ball um 𝑦0 der Größe 𝜖), dann müssen wir immer in der Lage sein, eine passende
Annäherungsgrenze (𝛿) für die Eingabe 𝑥 um 𝑥0 zu finden (d.h., wir definieren einen Ball um 𝑥0 der Größe 𝛿),
sodass für JEDES 𝑥 innerhalb dieses 𝛿-Balls (aber ungleich 𝑥0, falls 𝑥0 nicht zum Definitionsbereich gehört oder
es um den Grenzwert an sich geht), der Funktionswert 𝑓 (𝑥) ZWINGEND innerhalb unserer ursprünglichen 𝜖-
Toleranz um 𝑦0 liegt.
Falls dies für ein bestimmtes 𝑦0 gilt dann nennen wir 𝑦0 den Limes der Funktion 𝑓 an der Stelle 𝑥0.

Bemerkung:-

Falls das Epsilon-Delta Kriterium gilt, so ist die Funktion gleichmässig stetig.

Definition 4.2.7: Beschränktheit [Ziltener, 2024]

Eine Teilmenge von ℝ𝑛 heisst beschränkt genau dann, wenn sie in einem abgeschlossenen Ball enthalten
ist, der nicht ganz ℝ𝑛 ist.

In einfachen Worten gesagt ist eine Teilmenge beschränkt, wenn es ein abgeschlossener ist und nicht unendlich
gross ist.
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Definition 4.2.8: Kompaktheit [Ziltener, 2024]

Eine Teilmenge von ℝ𝑛 heisst kompakt genau dann, wenn sie abgeschlossen und beschränkt ist.

Satz 4.2.3 Bild einer kompakten Menge unter einer stetigen Abbildung [Ziltener, 2024]

Das Bild einer kompaketen Menge 𝐾 ⊆ ℝ𝑛 unter einer stetigen Abbildung 𝑓 : 𝐾 → ℝ𝑝 ist kompakt

Dieser Satz bedeutet nichts anderes als, dass wenn man eine stetige Funktion und eine kompakte Menge hat,
welche der dom von 𝑓 ist so ist der codom von 𝑓 auch eine kompakte Menge.

4.3 Topologisches Kriterium für Stetigkeit

Definition 4.3.1: relative Offen- und Abgeschlossenheit [Ziltener, 2024]

(i) Eine Teilmenge 𝑈 ⊆ 𝑋 heisst relativ offen in 𝑋 (oder schlichtweg off in 𝑋 oder relativ offen) genau
dann, wenn es eine offene Teilmenge 𝑈̃ von ℝ𝑛 gibt, sodass 𝑈 = 𝑈̃ ∩ 𝑋.

(ii) Eine Teilmenge 𝐴 ⊆ 𝑋 heisst relativ abgeschlossen in 𝑋 genau dann, wenn es eine abgeschlossene
Teilmenge 𝐴̃ von ℝ𝑛 gibt, sodass 𝐴 = 𝐴̃ ∩ 𝑋.

Die obige Definition basiert sozusagen auf die Ansichtsweise. Einfach gesagt kann eine Menge innerhalb einer
Teilmenge nicht offen sein, jedoch innerhalb einer anderen Menge schon. Das Gleiche gilt auch für abgeschlossene
Mengen. Der Sinn dahinter ist, dass eine Menge in ℝ𝑛 nicht offen/abgeschlossen ist, jedoch in einer Teilmenge
innerhalb ℝ𝑛 schon.

Definition 4.3.2: Umgebung [Ziltener, 2024]

Eine Teilmenge 𝑈 ⊆ 𝑋 heisst Umgebung von 𝑥0 realtiv zu 𝑋 (oder in 𝑋) genau dann, wenn es einen
offenen Ball um 𝑥0 gibt, dessen Durchschnitt mit 𝑋 in 𝑈 enthalten ist, dass heisst es gibt ein 𝑟 ∈ (0,∞),
sodass

𝐵𝑛𝑟 (𝑥0) ∩ 𝑋 ⊆ 𝑈.

Im Fall 𝑋 = ℝ𝑛 nennen wir ein solches 𝑈 auch schlichtweg eine Umgebung von 𝑥0.

Wenn wir ein Punkt 𝑥0 wählen und ein Ball mit einem Radius 𝑟 um 𝑥0 bilden und eine Menge wählen 𝑈 und
diese im Ball um 𝑥0 sich befindet, so ist 𝑈 in der Umgebung von 𝑥0.

4.4 Zwischenwertsatz und Folgerungen, Stetigkeit der Umkehrfunk-
tion

Satz 4.4.1 Zwischenwertsatz [Ziltener, 2024]

Seien 𝑎, 𝑏 ∈ ℝ, sodass 𝑎 ⩽ 𝑏, 𝑓 : [𝑎, 𝑏] → ℝ stetig, sodass 𝑓 (𝑎) ⩽ 𝑓 (𝑏), und 𝑦 ∈ [ 𝑓 (𝑎), 𝑓 (𝑏)]. Dann gibt es
ein 𝑥 ∈ [𝑎, 𝑏], sodass 𝑓 (𝑥) = 𝑦.

Der Zwischenwertsatz gilt, wenn eine stetige Funktion für alle 𝑥 Werte in einem Intervall als dom ein 𝑦 Wert als
Im hat. Zusätzlich gilt, dass der Anfangspunkt kleiner als der Endpunkt vom dom als auch vom Im der Funktion
ist.
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Definition 4.4.1: strenge Monotonie [Ziltener, 2024]

(i) Wir nennen 𝑓 monoton wachsend genau dann, wenn für alle 𝑥, 𝑥′ ∈ 𝑋 gilt, dass

𝑥 ⩽ 𝑥′ ⇒ 𝑓 (𝑥) ⩽ 𝑓 (𝑥′).

(ii) Wir nennen 𝑓 streng monoton wachsend genau dann, wenn für alle 𝑥, 𝑥′ ∈ 𝑋 gilt, dass

𝑥 < 𝑥′ ⇒ 𝑓 (𝑥) < 𝑓 (𝑥′).

In Kapitel 3.2 haben wir schon das monotone Wachstum definiert. Strenge Monotonie beschreibt eine Funktion,
dessen Folgenglieder strikt grösser sein müssen.

Bemerkung:-

Falls 𝑓 streng monoton wachsend ist, dann ist 𝑓 injektiv. [Ziltener, 2024]

Definition 4.4.2: k-te Wurzelfunktion [Ziltener, 2024]

Für jede gerade Zahl 𝑘 ∈ ℕ definieren wir die k-te Wurzelfunktion
√
𝑘 als die Umkehrfunktion der 𝑘-ten

Potenzfunktion 𝑝𝑘 : [0,∞) → [0,∞), d.h.

𝑘
√

:= 𝑝−1𝑘 : [0,∞) → [0,∞).

Für jede ungerade Zahl 𝑘 ∈ ℕ definieren wir die 𝑘-te Wurzelfunktion 𝑘
√

als die Umkehrfunktion der 𝑘-ten
Potenzfunktion 𝑝𝑘 : ℝ −ℝ, d.h.

𝑘
√

:= 𝑝−1𝑘 : ℝ → ℝ.

Sie obige Definition setzt Grenzen für die Wurzelfunktion. Da bei 𝑘-ten Wurzelfunktionen mit geraden 𝑘 eine
positive und negative Zahl als Resultat gelten kann, werden nur die positiven Zahlen betrachtet. Bei ungeraden
𝑘 sind positive und negative Zahlen erlaubt.

Definition 4.4.3: Logarithmus [Ziltener, 2024]

Wir definieren den (natürlichen) Logarithmus log als die Umkehrfunktion von exp : ℝ → (0,∞), d.h.

log := Log := exp−1 : (0,∞) → ℝ.

In Kapitel 3.4 haben wir gelernt, was exp() ist. Der natürlich Logarithmus ist die Umkehrfunktion von exp().
Einfach gesagt gibt der natürliche Logarithmus die Potenz raus, mit welcher 𝑒 potenziert werden muss, um diese
Zahl zu kriegen.

Bemerkung:-

Für alle 𝑥, 𝑦 ∈ (0,∞) gilt
log(𝑥, 𝑦) = log(𝑥) + log(𝑦).

Satz 4.4.2 Stetigkeit der Umkehrfunktion bei kompakten Definitionsbereich [Ziltener, 2024]

Wir nehmen an, dass 𝑓 bijektiv und stetig ist und dass 𝐾 kompakt ist. Dann ist die inverse Funktion

𝑓 −1 = 𝑓 ⟨−1⟩ : 𝑌 → 𝐾 ist stetig.

In sehr einfachen Worten gesagt ist die Inverse einer Funktion in einem kompakten Intervall stetig, sobald die
Funktion selbst stetig und bijektiv ist.

Satz 4.4.3 Bild, strenge Monotonie und Stetigkeit der Umkehrfunktion einer Funktion von einem Intervall nach
ℝ [Ziltener, 2024]
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Sei 𝑓 : 𝐼 → ℝ eine stetige Funktion. Dann gilt:

(i) Das Bild von 𝑓 ist ein Intervall.

(ii) Falls 𝑓 streng monoton wachsend ist, dann ist die Umkehrfunktion der Funktion 𝑓 : 𝐼 → im( 𝑓 ) streng
monoton wachsend und stetig.

Gehen wir die einzelnen Punkte durch. Der erste Punkt ist selbsterklärend. Wenn wir eine stetige Funktion haben,
dessen Urbild ein Intervall ist, dann ist das Bild der stetigen Funktion auch ein Intervall. Der zweite Punkt ist auch
selbsterklärend. Wenn die Funktion monoton wachsend ist, so ist seine Umkehrfunktion auch monoton wachsend.

Satz 4.4.4 Stetigkeit der Umkehrfunktion bei offenem Definitionsbereich [Ziltener, 2024]

Seien 𝑛, 𝑝 ∈ ℕ, sodass 𝑛 ⩾ 𝑝,𝑈 ⊆ ℝ𝑛 nicht leer und offen und 𝑓 : 𝑈 → ℝ𝑝 stetig und injektiv. Dann gilt:

(i) Es gilt 𝑛 = 𝑝.

(ii) Das Bild im( 𝑓 ) = 𝑓 (𝑈) ist offen (in ℝ𝑛).

(iii) Die Umkehrfunktion der Funktion 𝑓 : 𝑈 → im( 𝑓 ) ist stetig.

Eine Funktion in einem n-Dimensionalen Bereich, welche ein Bereich transformiert, hat für sein Bild und Urbild
dieselben Dimensionen (i). Des Weiteren gilt, dass das Urbild der Funktion offen ist. (ii) Schlussendlich gilt auch,
dass die Umkehrfunktion der Funktion stetig ist (iii).

4.5 Punktweise und gleichmässige Konvergenz

Definition 4.5.1: punktweise Konvergenz [Ziltener, 2024]

Wir sagen, dass die Folge ( 𝑓𝑚)𝑚∈ℕ0
punktweise gegen 𝑓 konvergiert genau dann, wenn

∀𝑥 ∈ 𝑋 : ( 𝑓𝑚(𝑥))𝑚∈ℕ0
→ 𝑓 (𝑥).

Für die obige Definition nehmen wir an, dass wir eine Folge haben, dessen Elemente aus Funktionen besteht. Wenn
wir einen Punkt wählen und diese in die Folge einsetzen (heisst den Punkt in die Funktionen der Folge einsetzen),
so sehen wir, dass die darauffolgende Funktion immer näher dem Zielwert der Zielfunktion sich annähert. In
anderen Worten, die Folge konvergiert.

Definition 4.5.2: gleichmässige Konvergenz [Ziltener, 2024]

Wir sagen, dass die folge ( 𝑓𝑚)𝑚∈𝕟0
gleichmässig gegen 𝑓 konvergiert genau dann, wenn(

sup || 𝑓𝑚(𝑥) − 𝑓 (𝑥)||
)
𝑚∈𝕟0

→ 0.

Die gleichmässige Konvergenz ist sehr ähnlich zur punktweisen Konvergenz. Der Unterschied besteht darin, dass
der Abstand mit jedem Folgenglied zu mehreren Punkten abnimmt und schliesslich gegen 0 geht.
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Kapitel 5

Differentialrechnung auf ℝ

Intuitiv ist die Ableitung einer Funktion 𝑓 : ℝ → ℝ an einer Stelle 𝑥0 ∈ ℝ die Steigung der Tangente an den
Graphen von 𝑓 durch den Punkt 𝑥0 , 𝑓 (𝑥0). Genauer gesagt, ist die Ableitung der Grenzwert der Steigungen der
Sekanten durch (𝑥0 , 𝑓 (𝑥0) und (𝑥, 𝑓 (𝑥)) für 𝑥 gegen 𝑥0. Ableitungen sind allgegenwärtig in den Wissenschaften
und im Ingenieurwesen. In der Mechanik ist die Geschwindigkeit eines Teilchens zum Beispiel die Ableitung seines
Ortes als eine Funktion der Zeit. Als ein anderes Beispiel ist in einem elektrischen Schwingkreis die Stromstärke
gleich der Ableitung der Ladung des Kondensators als eine Funktion der Zeit.

5.1 Differential und Differentiationsregeln

Definition 5.1.1: Differenzenquotient, Differenzierbarkeit, Ableitung (in einem
Punkt) [Ziltener, 2024]

(i) Wir definieren den Differenzenquotienten von 𝑓 zu 𝑥0 als die Funktion

𝑄 := 𝑄
𝑓
𝑥0 : 𝑈{𝑥0} → ℝ𝑝 , 𝑄(𝑥) := 𝑓 (𝑥) − 𝑓 (𝑥0)

𝑥 − 𝑥0
.

(ii) Wir nennen 𝑓 im Punkt 𝑥0 differenzierbar genau dann, wenn

𝑄 konvergiert im Punkt 𝑥0.

In diesem Fall definieren wir die Ableitung von 𝑓 an der Stelle 𝑥0 als den Grenzwert

𝑓 ′(𝑥0) := lim
𝑥0
𝑄 = lim

𝑥→𝑥0
𝑄(𝑥).

(iii) Wir nennen 𝑓 (auf 𝑈) differenzierbar genau dann, wenn 𝑓 in jedem Punkt differenzierbar ist. In
diesem Fall definieren wir die Ableitung von 𝑓 als die Funktion

𝑓 ′ : 𝑈 → ℝ𝑝 .

Gehen wir die einzelnen Punkte der Definition durch. Der Differenzenquotient (i) ist in einfachen Worten gesagt
die Änderungsrate einer Funktion, also die Steigung der Funktion zwischen zwei Punkten. Der zweite Punkt sagt
einfach aus, dass wenn der Differenzenquotient gegen einen Wert (Steigung) konvergiert, so ist eine Funktion in
diesem Punkt differenzierbar und seine Ableitung ist die Steigung selbst. (iii) sagt aus, dass die Ableitung eine
Funktion sein kann, da die Funktion an jedem Punkt abgeleitet werden kann.

Bemerkung:-

Wir schreiben 𝑓𝑖 für die 𝑖-te Komponente von 𝑓 . (Es gilt aslo 𝑓 − ( 𝑓1 , ..., 𝑓𝑝).) Die Funktion 𝑓 ist an der Stelle
𝑥0 differenzierbar genau dann, wenn für jedes 𝑖 ∈ {1, ..., 𝑝} die Funktion 𝑓𝑖 an der Stelle 𝑥0 differenzierbar ist.
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In diesem Fall gilt

𝑓 ′(𝑥0) =
©­­«
𝑓 ′1(𝑥0)
...

𝑓 ′𝑝(𝑥0)

ª®®¬ .
[Ziltener, 2024]

Wenn eine Funktion als Bild ein Vektor hat und als Urbild ein Skalar, dann ist die Funktion nur differenzierbar,
wenn jede Komponente differenzierbar ist.

Satz 5.1.1 Differenzierbarkeit impliziert Stetigkeit [Ziltener, 2024]

Falls 𝑓 an der Stelle 𝑥0 differenzierbar ist, dann ist 𝑓 an der Stelle 𝑥0 stetig.

Satz 5.1.2 Summen-, Produkt-, Quotientenregel für Ableitung [Ziltener, 2024]

Wir nehmen an, dass 𝑓 und 𝑔 an der Stelle 𝑥0 differenzierbar sind. Dann sind die Funktionen 𝑓 + 𝑔, 𝑓 · 𝑔
und falls 𝑔(𝑥0) ≠ 0, auch die Funktion

𝑓

𝑔
an der Stelle 𝑥0 differenzierbar, und es gilt:

(i) (Summenregel) ( 𝑓 + 𝑔)′(𝑥0) = 𝑓 ′(𝑥0) + 𝑔′(𝑥0)

(ii) (Produktregel = Leibnizregel) ( 𝑓 𝑔)′(𝑥0) = 𝑓 ′(𝑥0)𝑔(𝑥0) + 𝑓 (𝑥0)𝑔′(𝑥0)

(iii) (Quotientenregel)

(
𝑓

𝑔

) ′
(𝑥0) =

𝑓 ′(𝑥0)𝑔(𝑥0) − 𝑓 (𝑥0)𝑔′(𝑥0)
𝑔(𝑥0)2

Satz 5.1.3 Kettenregel [Ziltener, 2024]

Falls 𝑓 in 𝑥0 differenzierbar ist und 𝑔 in 𝑓 (𝑥0) differenzierbar ist, dann ist 𝑔 ◦ 𝑓 in 𝑥0 differenzierbar mit
Ableitung

(𝑔 ◦ 𝑓 )′(𝑥0) = 𝑔′( 𝑓 (𝑥0)) 𝑓 ′(𝑥0).

5.2 Mittelwertsatz und Folgerungen

Satz 5.2.1 Mittelwertsatz [Ziltener, 2024]

Wir nehmen an, dass 𝑓 stetig und auf dem offenen Intervall [𝑎, 𝑏] differenzierbar ist. Dann existiert ein
𝑥0 ∈]𝑎, 𝑏[, sodass

𝑓 ′(𝑥0) =
𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

Dieser Satz sagt nichts weiteres aus, als dass an einem gewissen Punkt der Funktion die Änderungsrate die
durchschnittliche Änderungsrate der gesamten Funktion ist.

Korollar 5.2.1 verschwindende Ableitung impliziert Konstanz, positive Ableitung strenges Wachstum
[Ziltener, 2024]

Sei 𝑓 stetig und auf dem offenen Intervall [𝑎, 𝑏] differenzierbar. Dann gilt folgendes:

(i) Falls 𝑓 ′ ≡ 0 auf ]𝑎, 𝑏[, dann ist 𝑓 konstant.

(ii) Falls 𝑓 ′ ⩾ 0 auf ]𝑎, 𝑏[, dann ist 𝑓 monoton wachsend.

(iii) Falls 𝑓 ′ > 0 auf ]𝑎, 𝑏[, dann ist 𝑓 streng monoton wachsend.
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Bemerkung:-

Für das obige Korollar gilt, dass falls 𝑓 ′ ⩽ 0 auf ]𝑎, 𝑏[, dann ist 𝑓 monoton fallend. Falls 𝑓 ′ < 0 auf ]𝑎, 𝑏[,
dann ist 𝑓 streng monoton fallend.

Definition 5.2.1: rechts- und linksseitinge Konvergenz [Ziltener, 2024]

(i) Wir nehmen an, dass es ein 𝑥+ > 𝑥0 gibts, sodass (𝑥0 , 𝑥+) ⊆ 𝑋. Wir sagen, dass 𝑓 im Punkt 𝑥0
von rechts gegen 𝑦0 konvergiert genau dann, wenn die eingeschränkte Funktion 𝑓 |(𝑥0 ,𝑥+) im Punkt
𝑥0 gegen 𝑦0 konvergiert. In diesem Fall schreiben wir

𝑓 (𝑥) → 𝑦0(𝑥 ↘ 𝑥0) oder 𝑓 (𝑥) 𝑥↘𝑥0−−−−→ 𝑦0

und definieren den rechtsseitigen Grenzwert von 𝑓 in 𝑥0 als

lim
𝑥↘𝑥0

𝑓 (𝑥) := lim
𝑥↓𝑥0

𝑓 (𝑥) := 𝑦0.

(ii) Wir nehmen an, dass es ein 𝑥− < 𝑥0 gibt, sodass (𝑥− , 𝑥0) ⊆ 𝑋. Wir sagen, dass 𝑓 im Punkt 𝑥0
von links nach rechts gegen 𝑦0 konvergiert genau dann, wenn die eingeschränkte Funktion 𝑓 |𝑥− ,𝑥0 im
Punkt 𝑥0 gegen 𝑦0 konvergiert. In diesem Fall schreiben wir

𝑓 (𝑥) → 𝑦0(𝑥 ↘ 𝑥0) oder 𝑓 (𝑥) 𝑥↘𝑥0−−−−→ 𝑦0

und definieren den links-seitigen Grenzwert von 𝑓 in 𝑥0 als

lim
𝑥↘𝑥0

𝑓 (𝑥) := lim
𝑥↑𝑥0

𝑓 (𝑥) := 𝑦0.

(iii) Wir sagen, dass 𝑓 im Punkt 𝑥0 von links (rechts) konvergiert genau dann, wenn es ein 𝑦0 ∈ ℝ𝑝 gibt
wogegen f im Punkt 𝑥0 von links (rechts) konvergiert

Der erste Punkt der Definition sagt aus, dass im Vergleich zum normalen Limes 𝑥 𝑥0 von oben sich annähert
aus dem Grund, weil wir nur ein kleines Intervall auf der rechten Seite von 𝑥0 betrachten 𝑥+. Der zweite Punkt
ist genau umgekehrt. 𝑥 nähert sich 𝑥0 von unten an, da wir nur ein kleines Intervall auf der linken Seite von 𝑥0
betrachten. Beide Limes resultieren zu einem Punkt. Falls einer der Limes gilt für eine Funktion, so konvergiert
die Funktion von rechts bzw. links zu 𝑦0.

Bemerkung:-

Falls 𝐹 an der Stelle 𝑥0 gegen 𝑦0 konvergiert und 𝐺 an der Stelle 𝑦0 gegen 𝑧0 konvergiert, dann konvergiert
die verknüpfte Funktion 𝐺 ◦ 𝐹 an der Stelle 𝑥0 gegen 𝑧0. [Ziltener, 2024]

Satz 5.2.2 Umkehrsatz [Ziltener, 2024]

Wir nehmen an, dass 𝑓 ′ differenzierbar ist und 𝑓 ′ ≠ 0. Dann gilt das Folgende:

(i) Das Bild von 𝑓 ist durch das offene Intervall 𝐽 gegeben,

im( 𝑓 ) = 𝐽.

(ii) Die Funktion 𝑓 : 𝐼 → 𝐽 ist bijektiv.

(iii) Die Umkehrfunktion 𝑓 ⟨−1⟩ = 𝑓 −1 : 𝐽 → 𝐼 ist differenzierbar mit

( 𝑓 −1)′(𝑦) = 𝑓 ′( 𝑓 −1(𝑦))−1 =
1

𝑓 ′( 𝑓 −1(𝑦)) , ∀𝑦 ∈ 𝐽.

In einfachen Worten besagt der Satz, dass wenn eine Funktion differenzierbar (stetig) und monoton steigend bzw.
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fallend ist, dann kann man eine Umkehrfunktion definieren, welche auch differenzierbar ist und dessen Steigung
der Kehrwert der Steigung der ursprünglichen Funktion ist.

Definition 5.2.2: allgemeine Potenzfunktion [Ziltener, 2024]

Wir definieren die 𝑎-te Potenzfunktion als

𝑝𝑎 : (0,∞) → ℝ, 𝑝𝑎(𝑥) := 𝑥𝑎 = 𝑒 𝑎 log 𝑥 = 𝑒𝑥𝑝(𝑎 log 𝑥).

5.3 Die komplexe Exponentialfunktion, trigonometrische, Arkus-, Hyperbel-
und Areafunktionen

Satz 5.3.1 Cos, Sin [Ziltener, 2024]

(i) (”Pythagoras Eigenschaft”) Es gilt

Cos2𝜑 + Sin2𝜑 = 1, ∀𝜑 ∈ ℝ.

(ii) Dei eingeschränkten Funktionen Sin|ℝ und Cos|ℝ sind differenzierbar mit Ableitungen

(Sin|ℝ)′ = Cos|ℝ (Cos|ℝ)′ = −Sin|ℝ

Proposition 5.3.1 Arkusfunktionen, Ableitungen davon [Ziltener, 2024]

(i) (eingeschränkter Sinus bijektiv) Die Funktion sin :

[
− 𝜋

2
,
𝜋
2

]
→ [−1, 1] ist bijektiv.

(ii) (Arkussinus stetig) Die Umkehrfunktion

arcsin := sin⟨−1⟩ : [−1, 1] →
[
− 𝜋

2
,
𝜋
2

]
stetig.

(iii) (Ableitungen des Arkussinus) Die Einschränkung arcsin |] − 1, 1[ ist differenzierbar mit Ableitung

arcsin′(𝑦) = 1√
1 − 𝑦2

, ∀𝑦 ∈] − 1, 1[.

(iv) (eingeschränkter Kosinus bijektiv) Die Funktion cos : [0,𝜋] → [−1, 1] ist bijektiv.

(v) (Arkuskosinus ist stetig) Die Umkehrfunktion

arccos := cos⟨−1⟩ : [−1, 1] → [0,𝜋]

ist stetig.

(vi) (Ableitung des Arkuskosinus) Die Einschränkung arccos |]−1,1[ ist differenzierbar mit Ableitung

arccos′(𝑦) = 1

−
√
1 − 𝑦2

, ∀𝑦 ∈] − 1, 1[.

(vii) (Ableitung des Tangens) Die Funktion tan :

]
− 𝜋

2
,
[𝑖]
2

[
→ ℝ ist differenzierbar mit Ableitung

tan′ = 1 + tan2 =
1

cos2
.
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(viii) (eingeschränkter Tangens bijektiv) Die Funktion tan :

]
− 𝜋

2
,
𝜋
2

[
→ ℝ ist bijektiv.

(ix) (Arkustangens) Die Umkehrfunktion

arctan := tan⟨−1⟩ : ℝ →
]
− 𝜋

2
,
𝜋
2

[
.

ist differenzierbar mit Ableitung

arctan′(𝑦) = 1

1 + 𝑦2 , ∀𝑦 ∈ ℝ.

Definition 5.3.1: Hyperbelfunktionen [Ziltener, 2024]

Wir definieren den hyperbolischen Kosinus, den hyperbolischen Sinus und den hyperbolischen Tangens als
die Funktionen cosh, sinh, tanh : ℝ → ℝ gegeben durch

cosh 𝑥 :=
𝑒𝑥 + 𝑒−𝑥

2
sinh 𝑥 :=

𝑒𝑥 − 𝑒−𝑥
2

tanh 𝑥
sinh 𝑥

cosh 𝑥
=
𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥

5.4 Höhere (stetige) Differenzierbarkeit, höhere Ableitungen

Definition 5.4.1: höhere (stetige) Differenzierbarkeit, höhere Ableitungen
[Ziltener, 2024]

(i) Wir nennen 𝑓 0-mal differenzierbar (keine Bedingung). Wir definieren ihre 0-te Ableitung (oder
Ableitung 0-ter Ordnung) als

𝑓 (0) := 𝑓 .

Rekursiv definieren wir für jedes 𝑘 ∈ ℕ: Die Funktion 𝑓 heisst 𝑘-mal differenzierbar genau dann,
wenn sie (𝑘−1)-mal differenzierbar ist und ihre (𝑘−1)-te Ableitung differenzierbar ist. Wir definieren
ihre 𝑘-te Ableitung (oder Ableitung 𝑘-ter Ordnung) als

𝑓 (𝑘) := ( 𝑓 (𝑘−1))′ : 𝑈 → ℝ𝑝 .

(ii) Sei 𝑘 ∈ ℕ0 Wir nennen 𝑓 𝑘-mal stetig differenzierbar (oder von der Klasse 𝐶𝑘 oder schlicht 𝐶𝑘)

genau dann, wenn 𝑓 𝑘-mal differenzierbar ist und 𝑓 (𝑘) stetig ist. Wir definieren die Menge

𝐶𝑘(𝑈,ℝ𝑝) := 𝐶𝑘(𝑈;ℝ𝑝) := { 𝑓 : 𝑈 → ℝ𝑝| 𝑓 ist 𝑘mal stetig differenzierbar}

und kürzen ab:
𝐶𝑘(𝑈) := 𝐶𝑘(𝑈,ℝ).

(iii) Wir nennen 𝑓 beliebig oft differenzierbar (oder 𝐶∞ oder glatt) genau dann, wenn 𝑓 𝑘-mal differen-
zierbar ist für jedes 𝑘 ∈ ℕ0. Wir definieren die Menge

𝐶∞(𝑈,ℝ𝑝) := 𝐶∞(𝑈;ℝ𝑝) := { 𝑓 : 𝑈 → ℝ𝑝| 𝑓 ist glatt}.

Der erste Punkt ist selbsterklärend. Der Punkt sagt aus, dass eine Funktion 𝑘 Mal abgeleitet werden kann nur
dann, wenn die vorherigen Ableitungen auch existieren. Falls die Ableitung stetig ist, so ist die Funktion stetig
differenzierbar (ii). Falls die Funktion beliebig oft abgeleitet werden kann und jeder dieser Ableitungen stetig ist,
so ist die Funktion glatt.
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Satz 5.4.1 Kriterium für stetige Differenzierbarkeit eines Limes [Ziltener, 2024]

Falls ( 𝑓𝑚)𝑚∈ℕ gleichmässig gegen 𝑓 konvergiert und ( 𝑓 ′𝑚)𝑚∈ℕ gleichmässig gegen 𝑔 konvergiert, dann gilt
𝑓 ∈ 𝐶1(𝑈,ℝ𝑝) und 𝑓 ′ = 𝑔.

Falls mehrere Funktionen gegen eine Funktion 𝑓 konvergiert und die Ableitungen der Funktionen gegen eine
andere Funktion 𝑔 konvergiert, dann ist 𝑓 ′ = 𝑔 nur dann, wenn die Funktionen und seine Ableitungen gleichmässig
konvergieren.

5.5 Taylornäherung einer Funktion, lokale Extrema

Definition 5.5.1: Taylorpolynom, Restglied, Taylorreihe [Ziltener, 2024]

Sei 𝐼 ein offenes Intervall, 𝑓 : 𝐼 → ℝ, 𝑚 ∈ ℕ0 ∪ {−1} und 𝑥0 ∈ 𝐼. Falls 𝑚 ⩾ 0, dann nehmen wir an, dass 𝑓
𝑚-mal differenzierbar ist.

(i) Wir definieren das Taylorpolynom von 𝑓 𝑚-ter Ordnung zum Entwicklungspunkt 𝑥0 (oder um 𝑥0)
als die Funktion

𝑇𝑚
𝑓 ,𝑥0

: ℝ → ℝ, 𝑇𝑚
𝑓 ,𝑥0

(𝑥) :=
𝑚∑
𝑘=0

𝑓 𝑘(𝑥0)
𝑘!

(𝑥 − 𝑥0)𝑘

(ii) Wir definieren das Restglied von 𝑓 𝑚-ter Ordnung zum Entwicklungspunkt 𝑥0 als die Funktion

𝑅𝑚
𝑓 ,𝑥0

:= 𝑓 − 𝑇𝑚
𝑓 ,𝑥0

: 𝐼 → ℝ.

(iii) Falls 𝑓 glatt ist, dann definieren wir die Taylorreihe von 𝑓 zum Entwicklungspunkt 𝑥0 (oder um 𝑥0)
als die Folge der Taylorpolynome

𝑇𝑓 ,𝑥0 := (𝑇𝑚
𝑓 ,𝑥0

)𝑚∈ℕ0
.

Der Taylorpolynom wird verwendet, um Funktionen an einem bestimmten Punkt zu beschreiben. Je höher die
Ordnung ist, desto genauer wird die Funktion beschrieben. Das Restglied ist ein Wert, welches die Genauigkeit
der Approximation beschreibt. Je kleiner der Wert ist, desto genauer ist die Approximation. Schlussendlich kann
der Taylorpolynom eine unendlich grosse Ordnung haben, wenn die Funktion glatt ist.

Satz 5.5.1 gleichmässige Konvergenz der Taylorreihe gegen Limes einer Potenzreihe [Ziltener, 2024]

Die Taylorreihe von 𝑓 um 𝑥0 konvergiert auf dem Intevall 𝐵̄1
𝑟 (𝑥0) = [𝑥0 − 𝑟, 𝑥0 + 𝑟 gleichmässig gegen 𝑓 , d.

h.
∀𝜖 ∈]0,∞[∃𝑚0 ∈ ℕ0∀𝑚 ∈ ℕ0∀𝑥 ∈ 𝐵̄1

𝑟 (𝑥0) : 𝑚 ⩾ 𝑚0 ⇒ |𝑅𝑚
𝑓 ,𝑥0

(𝑥) = 𝑓 (𝑥) − 𝑇𝑚
𝑓 ,𝑥0

(𝑥)| ⩽ 𝜖.

Dieser Satz besagt, dass die Taylorreihe einer Funktion 𝑓 gleichmässig auf einem bestimmten Intervall gegen
𝑓 konvergiert. Das bedeutet: Egal welche maximal erlaubte Abweichung (dein 𝜖 ) du dir für die Approximation
wünschst, der Satz garantiert, dass du eine ausreichend hohe Ordnung ( 𝑚0 ) für das Taylorpolynom finden kannst.
Ab dieser Ordnung ( 𝑚0 ) und für alle höheren Ordnungen ( 𝑚 ⩾ 𝑚0 ) wird das Taylorpolynom die Funktion 𝑓
für jeden einzelnen Punkt in dem betrachteten Intervall innerhalb dieser gewünschten maximalen Abweichung (
𝜖 ) approximieren.

Satz 5.5.2 Satz von Taylor, Restglied in Lagrangeform [Ziltener, 2024]

Wir nehmen an, dass 𝑓 (𝑚 + 1)-mal differenzierbar ist.

(i) Falls 𝑥0 < 𝑥, dann gibt es einen Punkt 𝜁 ∈]𝑥0 , 𝑥[, sodass

𝑅𝑚
𝑓 ,𝑥0

(𝑥) = 𝑓 𝑚+1(𝜁)
(𝑚 + 1)! (𝑥 − 𝑥0)

𝑚+1.
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(ii) Falls 𝑥0 > 𝑥, dann gibt es einen Punkt 𝜁 ∈]𝑥, 𝑥0[, sodass 𝑅𝑚𝑓 ,𝑥0(𝑥) =
𝑓 𝑚+1(𝜁)
(𝑚 + 1)! (𝑥 − 𝑥0)

𝑚+1 gilt.

Der obige Satz definiert das Restglied ein wenig genauer durch eine Formel. 𝜁 ist ein Element im offenen Intervall.
Dieser kann bestimmt werden, indem wir das Supremum von | 𝑓 (𝑚+1)(𝜁)| herausfinden.

Definition 5.5.2: (strikte) lokale Extremalstelle [Ziltener, 2024]

Wir nennen 𝑥0 eine lokale Minimalstelle von 𝑓 genau dann, wenn es eine Umgebung 𝑈 von 𝑥0 in 𝑋 gibt,
sodass

𝑓 (𝑥) ⩾ 𝑓 (𝑥0), ∀𝑥 ∈ 𝑈 {𝑥0}.

Wir nennen 𝑥0 eine strikte lokale Minimalstelle von 𝑓 genau dann, wenn es eine Umgebung 𝑈 von 𝑥0 in
𝑋 gibt, sodass

𝑓 (𝑥) > 𝑓 (𝑥0), ∀𝑥 ∈ 𝑈 {𝑥0}.

Wir nennen 𝑥0 eine lokale Maximalstelle von 𝑓 genau dann, wenn es eine Umgebung 𝑈 von 𝑥0 in 𝑋 gibt,
sodass

𝑓 (𝑥) ⩽ 𝑓 (𝑥0), ∀𝑥 ∈ 𝑈 {𝑥0}.

Wir nennen 𝑥0 eine strikte lokale Maximalstelle von 𝑓 genau dann, wenn es eine Umgebung 𝑈 von 𝑥0 in
𝑋 gibt, sodass

𝑓 (𝑥) < 𝑓 (𝑥0), ∀𝑥 ∈ 𝑈 {𝑥0}.

Wir nennen 𝑥0 eine (strikte) lokale Extremalstelle von 𝑓 genau dann, wenn 𝑥0 eine (strikte) lokale Mini-
malstelle oder (strikte) lokale Maximalstelle ist.

Eine Extremalstelle einer Funktion kann eine lokale Minimal- oder Maximalstelle in einem bestimmten Intervall
sein. Bei der Minimal- und Maximalstelle unterschieden wir zwischen strikt und ”normal”. Bei der ”normalen”
Minimal- bzw. Maximalstelle können es mehrere Punkte sein, welche denselben kleinsten bzw. grössten Wert in
diesem Intervall haben. Bei einem strikten Minimal- bzw. Maximalstelle kann es nur einen Punkt haben, welcher
den kleinsten bzw. grössten Wert in diesem Intervall hat.

Bemerkung:-

Falls man über die ganze Funktion redet, so redet man über die globale (strikte) Minimal- bzw. Maximalstelle.

Definition 5.5.3: kritischer Punkt [Ziltener, 2024]

𝑥0 heisst kritischer (oder stationärer) Punkt von 𝑓 genau dann, wenn die Ableitung von 𝑓 in 𝑥0 verschwin-
det, d. h.

𝑓 ′(𝑥0) = 0.

Satz 5.5.3 (strikte) lokale Extremalstelle

(i) (Satz von Fermat über kritische Punkte) Falls 𝑥0 eine lokale Extremalstelle von 𝑓 ist und 𝑓 in 𝑥0
differenzierbar ist, dann ist 𝑥0 ein kritischer Punkt von 𝑓 .

(ii) Wir nehmen an, dass 𝑥0 eine lokale Extremalstelle ist und dass es eine ungerade Zahl 𝑚 ∈ ℕ gibt,
sodass 𝑓 𝑚-mal differenzierbar ist und 𝑓 (𝑖)(𝑥0) = 0 ∀𝑖 = 1, ..., 𝑚 − 1.

Dann gilt 𝑓 (𝑚)(𝑥0) = 0.

(iii) Wir nehmen an, dass es eine gerade Zahl 𝑚 ∈ ℕ gibt, sodass 𝑓 𝑚-mal differenzierbar ist, und

𝑓 (𝑚)(𝑥0) > 0( 𝑓 (𝑚)(𝑥0) > 0). Dann ist 𝑥0 eine strikte lokale Minimalstelle (Maximalstelle) von 𝑓 .
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Damit eine Extremalstelle eine Minimal- bzw. Maximalstelle ist, betrachtet man die erste Ableitung der Funktion,
welche nicht 0 ergibt. Falls die Ordnung der Ableitung ungerade ist, so handelt es sich bei dieser Extremalstelle
nicht um eine Minimal- bzw. Maximalstelle. Ist die Ordnung der Ableitung gerade, so handelt es sich um eine
Minimal- bzw. Maximalstelle.
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Kapitel 6

Integration

6.1 Bestimmtes Riemann-Integral: Definition und Beispiele

Definition 6.1.1: Treppenfunktion [Ziltener, 2024]

𝜑 heisst Treppenfunktion genau dann, wenn 𝜑 eine (endliche) Linearkombination von Indikatorfunktionen
von Intervallen ist.

Das bedeutet, dass es eine Zahl gibt 𝑘 ∈ ℕ0, Intervalle 𝐼1 , ..., 𝐼𝑘 ⊆ 𝐼 und Zahlen 𝑐1 , ..., 𝑐𝑘 ∈ ℝ

gibt, sodass

𝜑 =

𝑘∑
𝑖=1

𝑐𝑖𝜒𝐼𝑖 .

Die Intervalle dürfen offen, abgeschlossen oder halb-offen sein.

Eine Treppenfunktion besteht aus meheren Intervallen, welche einen Wert zugewiesen worden sind. Diese Intervalle
werden kombiniert zu einer Funktion.

Definition 6.1.2: elementares Integral einer Treppenfunktion [Ziltener, 2024]

Wir definieren das elementare Integral von 𝜑 als die Summe

𝑆𝐼𝜑 := 𝑆𝐼(𝜑) :=
𝑘∑
𝑖=1

𝑐𝑖|𝐼𝑖|,

wobei 𝑘 ∈ ℕ0, 𝐼1 , ..., 𝐼𝑘 ⊆ 𝐼 Intervalle und 𝑐1 , ..., 𝑐𝑘 ∈ ℝ Zahlen sind, sodass

𝜑 =

𝑘∑
𝑖=1

𝑐𝑖𝜒𝐼𝑖 .

Die obige Definition sagt nichts Weiteres aus, als dass das elementare Integral die Fläche zwischen der Funktion
und der Abszisse ist. Bei der Treppenfunktion nehmen wir die einzelnen Abschnitte, multiplizieren sie mit der
Höhe und summieren sie auf.
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Definition 6.1.3: eigentliche Riemann-Integrierbarkeit, eigentliches Riemann-
Integral [Ziltener, 2024]

(i) Wir definieren das untere und das obere (Riemann-)Integral von 𝑓 (über 𝐼) als∫
𝐼

𝑓 := sup{𝑆𝐼𝜑|𝜑 : 𝐼 → ℝ Treppenfunktion : 𝜑 ⩽ 𝑓 },

∫
𝐼

𝑓 := inf{𝑆𝐼𝜓|𝜓 : 𝐼 → ℝ Treppenfunktion : 𝜓 ⩾ 𝑓 }.

(ii) Wir nennen 𝑓 (eigentlich Riemann)integrierbar (über 𝐼) genau dann, wenn∫
𝐼

𝑓 ⩾
∫
𝐼

𝑓 .

In diesem Fall definieren wir das (bestimmte eigentliche Riemann-)Integral von 𝑓 (über 𝐼) als∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 :=

∫
𝐼

𝑓 :=

∫
𝐼

𝑓 .

Bevor wir das eigentliche Riemann-Integral anschauen, müssen wir erst das untere und obere Riemann-Integral
anschauen. Das untere bzw. obere Riemann-Integral ist grösste Fläche, welche die Treppenfunktion bildet ohne da-
bei die Funktion zu überschreiten bzw. die kleinste Fläche, sodass die Treppenfunktion die Funktion überschreitet.
Wenn das untere Riemann-Integral gleich dem oberen Riemann-Integral ist, dann gilt, dass das untere Riemann-
Integral das eigentliche Riemann-Integral ist.

6.2 Eigenschaften der Riemann-Integration

Definition 6.2.1: Integral einer eingeschränkten Funktion [Ziltener, 2024]

Wir definieren ∫ 𝑏′

𝑎′
𝑓 :=

∫
𝐼′
𝑓 :=

∫
𝐼′
𝑓 |𝐼′ .

Die obige Definition sieht ein wenig formell aus, sagt aber nichts Weiteres aus als, dass das Integral einer ein-
geschränkten Funktion das Intergral der Funktion über dem Intervall ist, über dem die Funktion eingeschränkt
ist.

Satz 6.2.1 eigenschaften der riemann-integration [Ziltener, 2024]

(i) (treppenfunktion integrierbar) jede treppenfunktion 𝜑 : 𝑖 → 𝕣 ist riemann-integrierbar.

(ii) (stetige und beschränkte funktion integrierbar) jede stetige und beschränkte funktion 𝑓 : 𝑖 → 𝕣 ist
riemann-integrierbar.

(iii) jede beschränkte monotone funktion 𝑓 : 𝑖 → 𝕣 ist riemann-integrierbar.

seien jetzt 𝑓 , 𝑔 : 𝑖 → 𝕣 riemann-integrierbar funktionen und 𝑐 ∈ 𝕣.

(iv) (monotonie) falls 𝑓 ⩽ 𝑔, dann gilt ∫
𝑖

𝑓 ⩽
∫
𝑖

𝑔.
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(v) (linearität) die funktionen 𝑐 𝑓 und 𝑓 + 𝑔 sind riemann-integrierbar und∫
𝑖

𝑐 𝑓 = 𝑐

∫
𝑖

𝑖.∫
𝑖

( 𝑓 + 𝑔) =
∫
𝑖

𝑓 +
∫
𝑖

𝑔.

(vi) (minimum, maximum, absolutbetrag) die funktionen min 𝑓 , 𝑔, max 𝑓 , 𝑔 und | 𝑓 | sind riemann-
integrierbar. es gilt ���� ∫

𝑖

𝑓

���� ⩽ ∫
𝑖

| 𝑓 |.

(vii) (gebietsadditivität) seien 𝑎, 𝑏, 𝑐 ∈ 𝕣, sodass 𝑎 ⩽ 𝑏 ⩽ 𝑐, und 𝑓 : [𝑎, 𝑐] → 𝕣. die funktion 𝑓 ist riemann-
integrierbar genau dann, wenn die eingeschränkte funktionen 𝑓 |[𝑎,𝑏] und 𝑓 |[𝑏,𝑐] riemann-integrierbar
sind. in diesem fall gilt ∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 .

6.3 Hauptsatz der Differential- und Integralrechnung, Stammfunkti-
on

Definition 6.3.1: Integral mit vertauschten Grenzen [Ziltener, 2024]

Seien 𝑎, 𝑏 ∈ ℝ mit 𝑎 < 𝑏 und 𝑓 : [𝑎, 𝑏] → ℝ Riemann-integrierbar. Wir definieren das Integral∫ 𝑎

𝑏

𝑓 := −
∫ 𝑏

𝑎

𝑓 .
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Definition 6.3.2: rechts- und linksseitige Differenzierbarkeit und Ableitung
[Ziltener, 2024]

(i) Wir nehmen das Folgende an:

𝑋 ∩ [𝑥0 ,∞[ ist eine Umgebung von 𝑥0 in [𝑥0 ,∞[.

Wir definieren den rechtsseitigen Differenzenquotienten von 𝑓 zu 𝑥0 als die Abbildung

𝑄
𝑓 ,+
𝑥0 : 𝑋∩]𝑥0 ,∞[→ ℝ𝑝 , 𝑄

𝑓 ,+
𝑥0 (𝑥) := 𝑓 (𝑥) − 𝑓 (𝑥0)

𝑥 − 𝑥0

Wir nennen 𝑓 an der Stelle 𝑥0 rechtsseitig differenzierbar genau dann, wenn 𝑄
𝑓 ,+
𝑥0 an der Stelle 𝑥0

konvergiert. In diesem Fall definieren wir die rechtsseitige Ableitung von 𝑓 an der Stelle 𝑥0 als den
Grenzwert

𝑓 ′ + (𝑥0) := lim 𝑥 → 𝑥0𝑄
𝑓 ,+
𝑥0 (𝑥).

(ii) Linksseitige Differenzierbarkeit und Ableitung: Wir nehmen das Folgende an:

𝑋∩] −∞, 𝑥0] ist eine Umgebung von 𝑥0 in ] − ∞, 𝑥0].

Wir definieren den linksseitigen Differenzenquotienten von 𝑓 zu 𝑥0 als die Abbildung

𝑄
𝑓 ,−
𝑥0 : 𝑋∩] −∞, 𝑥0[→ ℝ𝑝 , 𝑄

𝑓 ,−
𝑥0 (𝑥) := 𝑓 (𝑥) − 𝑓 (𝑥0)

𝑥 − 𝑥0

Wir nennen 𝑓 an der Stelle 𝑥0 linksseitig differenzierbar genau dann, wenn 𝑄
𝑓 ,−
𝑥0 an der Stelle 𝑥0

konvergiert. In diesem Fall definieren wir die linksseitige Ableitung von 𝑓 an der Stelle 𝑥0 als den
Grenzwert

𝑓 ′ − (𝑥0) := lim 𝑥 → 𝑥0𝑄
𝑓 ,−
𝑥0 (𝑥).

In einfachen Worten gesagt: Wenn wir einen Punkt auf einer Funktion wählen 𝑥0 und einen weiteren Punkt
wählen 𝑥′ welcher grösser ist als 𝑥0 und diese zwei Punkte mit einer Geraden verbinden, so bildet die Gerade
eine Annäherung zur Tangente im Punkt 𝑥0. Wenn 𝑥′ sich immer weiter 𝑥0 annähert, so nähert sich auch die
Tangente dem richtigen Wert an. Dies gilt auch für, wenn 𝑥′ kleiner als 𝑥0 ist.

Definition 6.3.3: Stammfunktion [Ziltener, 2024]

Eine Stammfunktion für 𝑓 ist eine differenzierbare Funktion 𝐹 : 𝑋 → ℝ, sodass 𝐹′ = 𝑓

Satz 6.3.1 Hauptsatz der Differential- und Integralrechnung [Ziltener, 2024]

(i) (erster Hauptsatz) Seien 𝑐 ∈ 𝐼 und 𝑓 : 𝐼 → ℝ eine Riemann-integrierbare Funktion. Wir definieren

𝐹 : 𝐼 → ℝ, 𝐹(𝑥) :=
∫ 𝑥

𝑐

𝑓 .

Sei 𝑥 ∈ 𝐼 eine Stetigkeitsstelle von 𝑓 . Dann ist 𝐹 an der Stelle 𝑥 differenzierbar mit Ableitung

𝐹′(𝑥) = 𝑓 (𝑥).

(ii) (zweiter Hauptsatz = Formel von Newton und Leibnitz) Sei 𝐹 : 𝐼 → ℝ eine differenzierbare Funktion,
deren Ableitung Riemann-integrierbar ist. Dann gilt∫ 𝑏

𝑎

𝐹′ = 𝐹(𝑏) − 𝐹(𝑎).
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Gehen wir die einzelnen Punkte durch. Punkt (i) definiert eine Funktion 𝑓 . Wenn wir nun das Integral bilden 𝐹
und diese ableiten erhalten wir wieder die Funktion. Punkt (ii) sagt aus, dass wenn wir eine abgeleitete Funktion
integrieren 𝐹′ über einen Intervall 𝑎, 𝑏, so ist der Wert des Integrals die Differenz von der Stammfunktion 𝐹 an
Punkt 𝑏 und der Stammfunktion an Punkt 𝑎.

6.4 Unbestimmte Integration

Definition 6.4.1: unbestimmtes Integral [Ziltener, 2024]

Seien 𝑋 eine endliche Vereinigung von Intervallen mit positiven Längen und 𝑓 : 𝑋 → ℝ eine Funktion,
die eine Stammfunktion besitzt.
Wir definieren das unbestimmte Integral von 𝑓 als die Menge der Stammfunktion von 𝑓 ,∫

𝑓 := {Stammfunktion von 𝑓 }.

Wir wissen, dass beim Ableiten Konstanten verschwinden. Dies impliziert, dass beim Integrieren die Lösung
mehrere Stammfunktionen sein könnten. Beim unbestimmten Integral sind alle möglichen Lösungen in einer
Menge.

6.5 Partielle Integration, Anwendung: Darstellung von
𝜋
2

als Wallis-

sches Produkt

Satz 6.5.1 partielle Integration [Ziltener, 2024]

Sei 𝑋 eine endliche Vereinigung von Intervallen mit positiver Länge und 𝑢, 𝑣 : 𝑋 → ℝ Funktionen.
Falls 𝑢, 𝑣 differenzierbar sind und 𝑢′𝑣 eine Stammfunktion besitzt, dann besitzt 𝑢𝑣′ eine Stammfunktion
und es gilt ∫

𝑢𝑣′ = 𝑢𝑣 −
∫

𝑢′𝑣.

Satz 6.5.2 Wallissches Produkt [Ziltener, 2024]

Die Folge (𝑐𝑛)𝑛∈ℕ0
konvergiert gegen

𝜋
2
, also

𝜋
2
= lim
𝑛→∞

𝑐𝑛 =
2 · 2
1 · 3 · 4 · 4

3 · 5 · · · .

6.6 Substitutionsregel, Anwendungen: gewöhnliche Differentialglei-
chung erster Ordnung, Separation der Variablen, Partialbruch-
zerlegung, Strategien für das Integrieren

Satz 6.6.1 Substitutionsregel [Ziltener, 2024]

Seien 𝐼 ein offenes Intervall, 𝐹 ∈ 𝐶1(𝐼), 𝑔 ∈ 𝐶(im𝐹) und 𝑥0 , 𝑥1 ∈ 𝐼.
Es gilt ∫ 𝑥1

𝑥0

(𝑔 ◦ 𝐹)𝐹′ =
∫ 𝐹(𝑥1)

𝐹(𝑥0)
𝑔.
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6.7 Integration und gleichmässiger Limes, gliedweise Integration ei-
ner Potenzreihe

Proposition 6.7.1 Integral eines gleichmässigen Limes [Ziltener, 2024]

Falls die Folge ( 𝑓𝑚)𝑚∈ℕ0
gleichmässig gegen 𝑓 konvergiert, dann konvergiert die Folge der Integrale( ∫

𝐼

𝑓𝑚

)
𝑚∈ℕ0

gegen das Integral

∫
𝐼

𝑓 .

Korollar 6.7.1 durch Potenzreihe definierte Funktion ist gliedweise integrierbar [Ziltener, 2024]

Es gilt

𝑛∑
𝑘=0

𝑐𝑘
𝑘 + 1

(𝑏𝑘+1 − 𝑎𝑘−1) →
∫ 𝑏

𝑎

𝑓 für 𝑛 → ∞

Das obige Korollar sagt nichts Weiteres aus, als dass man eine Funktion, die als Potenzreihe (also als unendliche
Summe von Potenzen von 𝑥) vorliegt, gliedweise integrieren kann. Das bedeutet, man integriert jeden einzelnen
Term der Reihe separat und summiert diese Ergebnisse dann auf. Im Grenzwert (wenn man unendlich viele Terme
berücksichtigt) ergibt diese Summe genau das Integral der ursprünglichen Funktion. Es ist eine sehr praktische
Methode, die die Integration von Potenzreihen auf die Integration von einfachen Potenzen reduziert.

Satz 6.7.1 Grenzwertsatz von Abel [Ziltener, 2024]

Falls die Reihe

( 𝑛∑
𝑘=0

𝑐𝑘𝑟
𝑘

)
𝑛∈ℕ0

konvergiert, dann gilt

∞∑
𝑘=0

𝑐𝑘𝑥
𝑘 →

∞∑
𝑘=0

𝑐𝑘𝑟
𝑘 für 𝑥 ↗ 𝑟

Der Grenzwertsatz von Abel besagt, dass eine Funktion, die durch eine Potenzreihe definiert ist, sich auch am
Rand ihres Konvergenzbereichs ’gut’ verhält. Wenn die Potenzreihe an einem Randpunkt 𝑟 selbst konvergiert
(also einen endlichen Wert ergibt), dann strebt die Funktion 𝑓 (𝑥) stetig genau diesem Wert zu, wenn 𝑥 sich 𝑟 von
innen nähert. Dies garantiert eine Art ’Stetigkeit bis zum Rand’, sofern die Reihe dort nicht ’abbricht’.
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6.8 Uneigentliches Riemann-Integral

Definition 6.8.1: Konvergenz und Grenzwert einer Funktion bei ±∞
[Ziltener, 2024]

Seien 𝑋 ⊆ ℝ, 𝑝 ∈ ℕ, 𝑌 ⊆ ℝ𝑝 , 𝑓 : 𝑋 → 𝑌 und 𝑦0 ∈ ℝ𝑝 .

(i) Wir nehmen an, dass 𝑋 nach oben unbeschränkt ist. Wir sagen, dass 𝑓 bei ∞ gegen 𝑦0 Konvergiert
(oder dass 𝑓 (𝑥) für 𝑥 → ∞ gegen 𝑦0 konvergiert) genau dann, wenn

∀𝜖 ∈ (0,∞)∃𝑥∗ ∈ ℝ∀𝑥 ∈ 𝑋 : 𝑥 ⩾ 𝑥∗ ⇒ || 𝑓 (𝑥) − 𝑦0|| ⩽ 𝜖.

In diesem Fall nennen wir 𝑦0 den Grenzwert von 𝑓 bei ∞ und schreiben

lim
𝑥→∞

𝑓 (𝑥) := lim
∞

𝑓 := 𝑦0.

(ii) Wir nehmen an, dass 𝑋 nach unten unbeschränkt ist. Wir sagen, dass 𝑑 bei −∞ gegen 𝑦0 konvergiert
(oder dass 𝑓 (𝑥) für 𝑥 → ∞ gegen 𝑦0 konvergiert) genau dann, wenn

∀𝜖 ∈ (0,∞)∃𝑥∗ ∈ ℝ∀𝑥 ∈ 𝑋 : 𝑥 ⩽ 𝑥∗ ⇒ || 𝑓 (𝑥) − 𝑦0|| ⩽ 𝜖.

In diesem Fall nennen wir 𝑦0 den Grenzwert von 𝑓 bei −∞ und schreiben

lim
𝑥→−∞

𝑓 (𝑥) := lim
−∞

𝑓 := 𝑦0.

In Kapitel 4.2 haben über Grenzwerte von Funktionen geredet. In der obigen Definition haben wir die Funktion
auf eine Variable erweitert, welche gegen unendlich geht. Das Konzept ist die gleiche.
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Definition 6.8.2: uneigentliche Riemann-Integrierbarkeit, uneigentliches
Riemann-Integral [Ziltener, 2024]

(i) Seien 𝑎− ∈ ℝ, 𝑎+ ∈ ℝ ∪ {∞}, sodass 𝑎− < 𝑎+, und 𝑓 : [𝑎− , 𝑎+[→ ℝ. Wir nennen 𝑓 uneigentlich
Riemann-integrierbar genau dann, wenn 𝑓 eingeschränkt auf jedes kompakte Teilintervall von [𝑎− , 𝑎+[
eigentlich Riemann-integrierbar ist und∫ 𝑥+

𝑎−
𝑓 für 𝑥+ ↗ 𝑎+ konvergiert.

In diesem Fall definieren wir das uneigentliche Integral von 𝑓 als∫ 𝑎+

𝑎−
𝑓 := lim

𝑥+↗𝑎+

∫ 𝑥+

𝑎−
𝑓 .

(ii) Seien 𝑎− ∈ ℝ ∪ {−∞}, 𝑎+ ∈ ℝ, sodass 𝑎− < 𝑎+, und 𝑓 :]𝑎− , 𝑎+] → ℝ. Wir nennen 𝑓 uneigentlich
Riemann-integrierbar genau dann, wenn 𝑓 eingeschränkt auf jedes kompakte Teilintervall von ]𝑎− , 𝑎+]
eigentlich Riemann-integrierbar ist und∫ 𝑎+

𝑥−
𝑓 für 𝑥− ↘ 𝑎− konvergiert.

In diesem Fall definieren wir das uneigentliche Integral von 𝑓 als∫ 𝑎+

𝑎−
𝑓 := lim

𝑥−↘𝑎−

∫ 𝑎+

𝑥−
𝑓 .

(iii) Seien 𝑎− , 𝑎+ ∈ ℝ ∪ {−∞}, 𝑎+ ∈ ℝ, sodass 𝑎− < 𝑎+, und 𝑓 :]𝑎− , 𝑎+[→ ℝ. Wir nennen f uneigentlich
Riemann-integrierbar genau dann, wenn es ein 𝑏 ∈]𝑎− , 𝑎+[ gibt, sodass 𝑓 |[𝑏,𝑎+[ und 𝑓 |]𝑎− ,𝑏] uneigentlich
Riemann-integrierbar sind. In diesem Fall definieren wir das uneigentliche Integral von 𝑓 als∫ 𝑎+

𝑎−
𝑓 :=

∫ 𝑏

𝑎−
𝑓 +

∫ 𝑎+

𝑏

𝑓

wobei 𝑏 ∈]𝑎−𝑎+[.

Wir betrachten nun wie bei den Grenzwerten Integrale, dessen Intervalle ins Unendliche gehen. Falls der Wert des
Integrals gegen einen Wert strebt, so konvergiert dieses Integral und dieser Wert ist die Lösung des uneigentlichen
Integrals.
Bei der Berechnung von Integralen kann es bei bestimmten Intervallen zu Problemen führen, weshalb man auch
die Intervalle aufteilen kann und die Integrale miteinander summieren kann.
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Kapitel 7

Gewöhnliche Differentialgleichungen,
Anwendung auf die Mechanik und die
Elektrotechnik

7.1 Definition einer gewöhnlichen Differentialgleichung, Anfangswert-
problem, Beispiele, gedämpfter Federschwinger, elektrische Schwing-
kreis

Definition 7.1.1: Gewöhnliche Differentialgleichung [Ziltener, 2024]

Sei 𝑛 ∈ ℕ0 = {0, 1, 2, ...} und 𝐼 ein offenes Intervall. (𝐼 kann beschränkt oder unbeschränkt sein.) Wir
bezeichnen die Variable in ℝ mit 𝑡, verwenden die Notation ¤𝑢 = 𝑢′ für die Ableitung einer Funktion 𝑢
und schreiben 𝑢(𝑘) für die 𝑘-te Ableitung von 𝑢.

Eine gewöhnliche Differentialgleichung (GDG) der Ordnung 𝑛 für eine Funktion 𝑢 : 𝐼 → ℝ ist eine
Gleichung der Form

𝜑(𝑡 , 𝑢(𝑡), ¤𝑢(𝑡)), ..., 𝑢(𝑛)(𝑡)) = 0 ∀𝑡 ∈ 𝐼

wobei 𝜑 : 𝐼 ×ℝ𝑛+1 → ℝ eine konstante Funktion ist, die nicht bezüglich der letzten Variable konstant ist.

Eine GDG ist eine Gleichung bestehend aus einer Linearkombination von einer Funktion und seine Ableitungen.

Bemerkung:-

Analog definieren wir den Begriff einer GDG für eine Funktion 𝑢 : 𝐼 → ℂ, indem wir oben überall ℝ durch ℂ

ersetzen. [Ziltener, 2024]

Definition 7.1.2: Anfangswertproblem

Wir wissen, dass es unendlich viele Ableitungen von einer Funktion gibt, weil die Konstante beliebig
gewählt werden kann. Damit wir bei GDG Differentialgleichungen nicht dieses Problem haben, können wir
das Anfangswertproblem einführen. Das Anfangswertproblem führt Bedingungen für die GDG ein, damit
es nicht zu unendlichen vielen Möglichkeiten gibt für die Urfunktion.
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7.2 Linearität und Homogenität einer GDG, Superpositionsprinzip,
Lösungsraum einer homogenen linearen GDG, charakteristisches
Polynom einer GDG

Definition 7.2.1: Linearität und Homogenität einer GDG [Ziltener, 2024]

Wir nennen die GDG für eine reellwertige Funktion linear genau dann, wenn es Funktionen 𝑎𝑖 , 𝑓 : 𝐼 →
ℝ(𝑖 = 0, ..., 𝑛) gibt, sodass die GDG nach Verschieben von Termen gegeben ist durch

𝑛∑
𝑖=0

𝑎𝑖𝑢
(𝑖) = 𝑓 , d. h.

𝑛∑
𝑖=0

𝑎𝑖(𝑡)𝑈 (𝑖)(𝑡) = 𝑓 (𝑡), ∀𝑡 ∈ 𝐼

Wir nehmen jetzt an, dass die GDG linear ist. Falls die Funktion 𝑓 konstant gleich 0 ist, dann heisst die
GDG homogen, sonst inhomogen. Die Funktion 𝑓 heisst die Inhomogenität (Quellterm oder Störterm) der
GDG.

GDG können die Eigenschaft von Linearität und Homogenität annehmen. Eine GDG ist linear, wenn

1. die Funktion 𝑈(𝑡) und seine Ableitungen keine Potenzen haben,

2. die Funktion 𝑈(𝑡) selbst und seine Ableitungen nicht in einer Funktion sind,

3. die Funktion 𝑈(𝑡) sowie seine Ableitungen nicht miteinander multipliziert werden.

Falls die GDG linear ist und konstant gleich 0 ist, so ist sie homogen. Ansonsten ist sie inhomogen.

Bemerkung:-

Wir definieren Linearität für eine GDG für komplexwertige Funktion analog. [Ziltener, 2024]

Definition 7.2.2: Superpositionsprinzip

Wenn eine lineare GDG als Lösung zwei oder mehrere Funktionen hat, dann kann man diese zwei Funk-
tionen miteinander addieren. Dies ist dann die endgültige Lösung der GDG.

Definition 7.2.3: charakteristisches Polynom [Ziltener, 2024]

Wir definieren das charakteristische Polynom der GDG als die Funktion

𝑝(𝜆) := 𝜆𝑛 +
𝑛−1∑
𝑖=0

𝑎𝑖𝜆
𝑖 = 𝜆𝑛 + 𝑎𝑛−1𝜆𝑛−1 + ... + 𝑎0.

Eine GDG kann in ein charakteristisches Polynom umgewandelt werden, indem man die Funktion 𝑈 mit 𝜆
ersetzt und die Ableitung 𝑈 (𝑖) durch die dazugehörige Potenz 𝜆𝑖 . Durch die Umwandlung ist es viel einfacher die
Lösungen der GDG zu finden, da Lambda die Eigenwerte der GDG sind. Diese können dann eingesetzt werden.
(𝑢(𝑡) = 𝑢𝜆(𝑡) := 𝑒𝜆𝑡)
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7.3 Systeme gewöhnlicher Differentialgleichungen, Anfangswertpro-
bleme

Definition 7.3.1: System gewöhnlicher Differentialgleichungen [Ziltener, 2024]

Ein System von 𝑚 gewöhnlichen Differentialgleichungen erster Ordnung für 𝑛 Funktionen von 𝐼 nach ℝ

ist eine Gleichung für eine differenzierbare Funktion 𝑈 : 𝐼 → ℝ𝑛 der Form

𝜓(𝑡 , 𝑈(𝑡), ¤𝑈(𝑡)) = 0 ∀𝑡 ∈ 𝐼

wobei 𝜓 : 𝐼 ×ℝ𝑛 ×ℝ𝑛 → ℝ𝑚 eine feste Funktion der Variablen 𝑡 , 𝑋, 𝑌 ist, die nicht bezüglich 𝑌 konstant
ist. Wir nennen ein solches System linear genau dann, wenn es eine Funktion 𝐹 : 𝐼 → ℝ𝑚 gibt, sodass für
jedes 𝑡 ∈ 𝐼 die Funktion (𝑋,𝑌) ↦→ 𝜓(𝑡 , 𝑋, 𝑌) + 𝐹(𝑡) linear ist.

Wir nehmen jetzt an, dass das System linear ist. Falls 𝐹 wie oben konstant gleich 0 gewählt wer-
den kann, dann heisst das System homogen, sonst inhomogen. Die Funktion 𝐹 heisst die Inhomogenität
(oder Quellterm) der GDG.

Ein System GDG ist eine erweiterte Definition der GDG aus Kapitel 7.1. Anstelle das es nur eine einzige Gleichung
ist, ist ein System GDG mehrere Gleichungen.

Bemerkung:-

Analog definieren wir den Begriff eines Systems von GDG erster Ordnung für 𝑛 Funktionen von 𝐼 nach ℂ und
Linearität eines solchen Systems. [Ziltener, 2024]
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Kapitel 8

Differentialrechnung im ℝ𝑛

8.1 Partielle Ableitung und Differential

Definition 8.1.1: Differenzierbarkeit und Ableitung einer vektorwertigen Funktion
einer Variable [Ziltener, 2024]

Sei 𝑈 eine offene Teilmenge von ℝ, 𝑝 ∈ ℕ,

𝑔 =
©­­«
𝑔1
...
𝑔𝑝

ª®®¬ : 𝑈 → ℝ𝑝

eine Funktion und 𝑦0 ∈ 𝑈.

Wir nennen 𝑔 an der Stelle 𝑦0 differenzierbar genau dann, wenn jede Komponente 𝑔𝑖 im Punkt 𝑦0
differenzierbar ist (im Sinn der Analysis I). In diesem Fall definieren wir die Ableitung von 𝑔 im Punkt
𝑦0 als den Vektor

𝑔′(𝑦0) :=
©­­«
𝑔′1(𝑦0)
...

𝑔′𝑝(𝑦0)

ª®®¬ .
Wenn wir eine Funktion haben, welcher als Lösung einen Vektor hat, dann ist diese nur differenzierbar, wenn jede
Funktion im Vektor selbst differenzierbar ist. Dies sagt die obige Funktion.
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Definition 8.1.2: partielle Differenzierbarkeit [Ziltener, 2024]

Seien nun 𝑛, 𝑝 ∈ ℕ, 𝑈 eine offene Teilmenge von ℝ𝑛 und 𝑓 : 𝑈 → ℝ𝑝 eine Funktion. Das bedeutet, dass

𝑓 eine vektorwertige Funktion mehrerer Veränderlicher ist. Wir schreiben 𝑥 𝑗 für die 𝑗-te Koordinate eines

Punktes 𝑥 ∈ ℝ𝑛 und 𝑓 𝑖 für die 𝑖-te Komponente von 𝑓 . Das bedeutet, dass

𝑓 (𝑥) =
©­­«
𝑓 1(𝑥1 , ..., 𝑥𝑛)

...

𝑓 𝑝(𝑥1 , ...𝑥𝑛)

ª®®¬ , ∀𝑥 ∈ 𝑈.

Sei 𝑥0 ∈ 𝑈 und 𝑗 ∈ {1, ..., 𝑛}.

Wir nennen 𝑓 an der Stelle 𝑥0 partiell nach der 𝑗-ten Variable 𝑥 𝑗 differenzierbar genau dann,
wenn die Funktion

𝑔(𝑦) := 𝑓 (𝑥10 , ..., 𝑥
𝑗−1
0 , 𝑦, 𝑥

𝑗+1
0 , ..., 𝑥𝑛0 )

im Punkt 𝑦 = 𝑥
𝑗

0 differenzierbar ist. In diesem Fall defieniren wir die partielle Ableitung von 𝑓 nach der

𝑗-ten Variable im Punkt 𝑥0 als die Ableitung von 𝑔 im Punkt 𝑥
𝑗

0. Wir schreiben diese partielle Ableitung
als

𝑓𝑥 𝑗 (𝑥0) := 𝐷𝑗 𝑓 (𝑥0) := 𝜕𝑗 𝑓 (𝑥0) :=
𝜕 𝑓

𝜕𝑥 𝑗
(𝑥0) := 𝑔′(𝑥 𝑗0) ∈ ℝ𝑝 .

Wir sagen, dass 𝑓 im Punkt 𝑥0 partiell differenzierbar ist genau dann, wenn 𝑓 im Punkt 𝑥0 nach jeder
Variablen partiell differenzierbar ist. In diesem Fall definieren wir die Jacobi-Matrix von 𝑓 im Punkt 𝑥0
als die Matrix

𝐽 𝑓 (𝑥0) := ( 𝑓𝑥1 · · · 𝑓𝑥𝑛 (𝑥0)) =
©­­«
𝑓 1
𝑥1
(𝑥0) · · · 𝑓 1𝑥𝑛 (𝑥0)
...

...

𝑓
𝑝

𝑥1
(𝑥0) · · · 𝑓

𝑝

𝑥𝑛 (𝑥0)

ª®®¬ .
Wir nennen 𝑓 partiell differenzierbar genau dann, wenn 𝑓 in jedem Punkt von 𝑈 partiell differenzierbar ist.
In diesem Fall definieren wir für jedes 𝑗 ∈ {1, ..., 𝑛} die partielle Ableitung von 𝑓 nach der 𝑗-ten Variable
als die Abbildung

𝑓𝑥 𝑗 : 𝑈 → ℝ𝑝 .

Eine Funktion 𝑓 : 𝑈 ⊆ ℝ𝑛 → ℝ𝑝 (mit 𝑛 Eingabevariablen und 𝑝 Ausgabekomponenten) wird an einem Punkt

𝑥0 ∈ 𝑈 partiell nach der 𝑗-ten Variable 𝑥 𝑗 differenzierbar genannt, wenn die Funktion, die entsteht, indem man

alle anderen Variablen ausser 𝑥 𝑗 auf ihre Werte in 𝑥0 fixiert, klassisch nach 𝑥 𝑗 differenzierbar ist. Die resultierende

partielle Ableitung
𝜕 𝑓

𝜕𝑥 𝑗
(𝑥0) ist dann ein Vektor in ℝ𝑝 . 𝑓 ist an 𝑥0 partiell differenzierbar, wenn sie nach jeder ihrer

𝑛 Variablen partiell differenzierbar ist. In diesem Fall fasst die Jacobi-Matrix 𝐽 𝑓 (𝑥0) alle partiellen Ableitungen
von 𝑓 nach den Variablen als 𝑝 × 𝑛-Matrix zusammen, wobei jede Spalte der partiellen Ableitung nach einer
Variablen entspricht. 𝑓 heisst partiell differenzierbar, wenn sie in jedem Punkt ihres Definitionsbereichs 𝑈 partiell
differenzierbar ist.

Definition 8.1.3: (totale) Ableitung [Ziltener, 2024]

Wir nennen 𝑓 and der Stelle 𝑥0 (total) differenzierbar genau dann, wenn es eine lineare Abbildung 𝐴 :
ℝ𝑛 → ℝ𝑝 gibt, sodass

𝑔(𝑥) := || 𝑓 (𝑥) − 𝑓 (𝑥0) − 𝐴(𝑥 − 𝑥0)||
||𝑥 − 𝑥0||

→ 0 für 𝑥 → 𝑥0.

Wir nennen 𝑓 (total) differenzierbar genau dann, wenn 𝑓 an der Stelle in 𝑈 differenzierbar ist.

Wir erinnern uns an die Definition von Kapitel 5.1. Die obige Definition erweitert die eben genannte Definition
auf Vektorebene.
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8.2 Differentiationsregeln, Kettenregel, Richtungsableitung, Gradi-
ent, stetige Differenzierbarkeit

Satz 8.2.1 Kettenregel [Ziltener, 2024]

Falls 𝑓 in 𝑥0 differenzierbar ist und 𝑔 in 𝑓 (𝑥0) differenzierbar ist, dann ist 𝑔 ◦ 𝑓 in 𝑥0 differenzierbar mit
Ableitung

𝑑(𝑔 ◦ 𝑓 )(𝑥0) = 𝑑𝑔( 𝑓 (𝑥0)) ◦ (𝑑𝑓 (𝑥0)) = 𝑑𝑔( 𝑓 (𝑥0))𝑑𝑓 (𝑥0) : ℝ𝑛 → ℝ𝑞 .

Korollar 8.2.1 Ableitung von Summe, Produkt, Quotient [Ziltener, 2024]

Wir nehmen an, dass 𝑓 und 𝑔 in 𝑥0 differenzierbar sind. Es gilt:

(i) Die Summe 𝑓 + 𝑔 ist in 𝑥0 differenzierbar und 𝑑( 𝑓 + 𝑔)(𝑥0) = 𝑑𝑓 (𝑥0) + 𝑑𝑔(𝑥0)

(ii) (Leibnizregel) Das Skalarprodukt 𝑓 · 𝑔 =

𝑝∑
𝑖=1

𝑓 𝑖 𝑔 𝑖 ist in 𝑥0 differenzierbar und

𝑑( 𝑓 · 𝑔)(𝑥0) = 𝑔(𝑥0) · 𝑑𝑓 (𝑥0) + 𝑓 (𝑥0) · 𝑑𝑔(𝑥0),

wobei 𝑔(𝑥0) · 𝑑𝑓 (𝑥0) :=
𝑝∑
𝑖=1

𝑔 𝑖(𝑥0)𝑑𝑓 𝑖(𝑥0) usw.

(iii) Wenn 𝑝 = 1 und 𝑔(𝑥0) ≠ 0, dann ist der Quotient
𝑓

𝑔
in 𝑥0 differenzierbar und

𝑑

(
𝑓

𝑔

)
(𝑥0) =

𝑔(𝑥0)𝑑𝑓 (𝑥0) − 𝑓 (𝑥0)𝑑𝑔(𝑥0)
(𝑔(𝑥0))2

.

Definition 8.2.1: Richtungsableitung [Ziltener, 2024]

Wir sagen, dass 𝑓 an der Stelle 𝑥0 in Richtung 𝑣 differenzierbar ist genau dann, wenn die Funktion

𝑔 : ℝ → ℝ𝑝 , 𝑔(𝑡) := 𝑓 (𝑥0 + 𝑡𝑣),

im Punkt 𝑡 = 0 differenzierbar ist. In diesem Fall definieren wir die (Richtungs-)Ableitung von 𝑓 an der
Stelle 𝑥0 in Richtung 𝑣 als den Vektor

𝑑𝑣 𝑓 (𝑥0) := 𝐷𝑣 𝑓 (𝑥0) := 𝑔′(0) :=
©­­«
𝑔′1(0)
...

𝑔′𝑝(0)

ª®®¬ ∈ ℝ𝑝 .

Die Richtungsableitung wird verwendet, um die Funktion in eine bestimmte Richtung von einem beliebigen Punkt
𝑥0 zu beschreiben. Die Richtung kann mit dem Richtungsvektor 𝑣 bestimmt werden.

Definition 8.2.2: Gradient [Ziltener, 2024]

Der Gradient von 𝑓 an der Stelle von 𝑥 ist der Vektor

∇ 𝑓 (𝑥) :=
©­­«
𝐷1 𝑓 (𝑥)

...
𝐷𝑛 𝑓 (𝑥)

ª®®¬ =
©­­«
𝑓𝑥1(𝑥)
...

𝑓𝑥𝑛 (𝑥)

ª®®¬ .
Der Gradient ist ein Vektor bestehend aus den partiellen Ableitungen der Funktion. Der Gradient zeigt immer in
die Richtung wo die Tangente eines Punktes auf der Funktion die grösste Steigung hat. Die Länge des Gradients
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ist die Steigung selbst.

Definition 8.2.3: stetige partielle Differenzierbarkeit [Ziltener, 2024]

Wir nennen eine Funktion 𝑓 : 𝑈 → ℝ𝑝 stetig partiell differenzierbar (oder schlichtweg stetig differenzierbar
oder von der Klasse 𝐶1) genau dann, wenn 𝑓 partiell differenzierbar ist und ihre partiellen Ableitungen
stetig sind.
Wir definieren die Menge

𝐶1(𝑈,ℝ𝑝) := 𝐶1(𝑈;ℝ𝑝) := { 𝑓 : 𝑈 → ℝ𝑝| 𝑓 ist stetig differenzierbar}.

Im Fall 𝑝 = 1 schreiben wir einfacher
𝐶1(𝑈) := 𝐶1(𝑈,ℝ).

Die stetige partielle Differenzierbarkeit sagt aus, dass eine Funktion, wenn abgeleitet in jede Richtung stetig ist.
Dies bedeutet, dass es keine abrupte Änderung der Steigung gibt.

Bemerkung:-

Stetige partielle Differenzierbarkeit impliziert totale Differenzierbarkeit. Totale Differenzierbarkeit impliziert
jedoch nicht stetige partielle Differenzierbarkeit.

8.3 Vektorfeld, Potential und Wegintegral

Definition 8.3.1: Vektorfeld, Gradientenfeld [Ziltener, 2024]

Sei 𝑈 ⊆ ℝ𝑛 offen.

Ein Vektorfeld auf 𝑈 ist eine Abbildung
𝑋 : 𝑈 → ℝ𝑛 .

Sei 𝑓 ∈ 𝐶1(𝑈). Wir definieren das Gradientenfeld von 𝑓 als

∇ 𝑓 : 𝑈 → ℝ𝑛 , ∇ 𝑓 (𝑥) :=
©­­«
𝐷1 𝑓 (𝑥)

...
𝐷𝑛 𝑓 (𝑥)

ª®®¬ .
Ein Vektorfeld kann man sich als eine Abbildung von Punkten vorstellen, wobei an jedem Punkt ein Vektor
zugeordnet wird. Der dazugehörige Gradientenfeld ist in einfachen Worten gesagt die Ableitung des Vektorfeldes.
Diese zeigt in Richtung mit der steilsten Steigung des Vektorfeldes.

Definition 8.3.2: Potential und Konservativität eines Vektorfeldes [Ziltener, 2024]

Sei 𝑈 ⊆ ℝ𝑛 eine offene Teilmenge und 𝑋 : 𝑈 → ℝ𝑛 ein Vektorfeld.

Ein Potential für 𝑋 ist eine differenzierbare Funktion 𝑓 : 𝑈 → ℝ, sodass

𝜕 𝑓 = 𝑋.

Das Vektorfeld 𝑋 heisst konservativ genau dann, wenn es ein Potential besitzt.

In sehr einfachen Worten gesagt hat ein Vektorfeld ein Potential falls das Vektorfeld der Gradient der Ursprungs-
funktion ist. Falls ein Vektorfeld ein Potential besitzt, so ist das Vektorfeld konservativ.
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Definition 8.3.3: Wegintegral [Ziltener, 2024]

Wir definieren das Wegintegral von 𝑋 längs 𝛾 als∫
𝑋 · 𝑑𝛾 :=

∫ 𝑏

𝑎

𝑋(𝛾(𝑡)) · ¤𝛾(𝑡)𝑑𝑡.

Das Wegintegral berechnet die gesamte kumulative Wirkung eines Vektorfeldes entlang eines definierten Pfades.
Hierbei wird an jedem Punkt des Weges der Anteil des Feldes berücksichtigt, der in Bewegungsrichtung liegt. Das
Ergebnis des Wegintegrals ist immer eine einzelne Zahl (ein Skalar), die beispielsweise die gesamte verrichtete
Arbeit darstellt.

Definition 8.3.4: Geschlossenheit eines Weges [Ziltener, 2024]

Sei 𝑈 ⊆ ℝ𝑛 eine Teilmenge.

Ein Weg 𝛾 : [𝑎, 𝑏] → 𝑈 heisst geschlossen genau dann, wenn 𝛾(𝑎) = 𝛾(𝑏).

Einfach gesagt ist ein Weg geschlossen, falls der Weg am selben Punkt endet, wo er angefangen hat.

Definition 8.3.5: weg-zusammenhängend, konvex [Ziltener, 2024]

Sei 𝑆 ⊆ ℝ𝑛 .

(i) 𝑆 heisst weg-zusammenhängend genau dann, wenn es für jedes Paar von Punkten 𝑥0 , 𝑥1 ∈ 𝑆 einen
stetigen Weg 𝛾 : [0, 1] → 𝑆 von 𝑥0 nach 𝑥1 gibt, d. h.

𝛾(𝑖) = 𝑥𝑖 , für 𝑖 = 0, 1.

(ii) 𝑆 heisst konvex genau dann, wenn für jedes Paar von Punkten 𝑥0 , 𝑥1 ∈ 𝑆 und jedes 𝑡 ∈ [0, 1] gilt:

𝛾(𝑡) := (1 − 𝑡)𝑥0 + 𝑡𝑥1 ∈ 𝑆.

Eine Menge ist weg-zusammenhängend, wenn man zwei beliebige Punkte wählen kann und diese mit einem Weg
verbinden kann, welche sich innerhalb der Menge befindet. Falls dieser Weg auch eine gerade ist, so ist die Menge
konvex.

8.4 Charakterisierung der Konservativität mittels Ableitungen, In-
tegrabilitätsbedingung, Rotation eines Vektorfeldes

Definition 8.4.1: einfach zusammenhängend [Ziltener, 2024]

Eine Teilmenge 𝑆 ⊆ ℝ𝑛 heisst einfach zusammenhängend genau dann, wenn 𝑆 weg-zusammenhängend ist
und für jede stetige Abbildung 𝛾 : 𝑆1 → 𝑆 es eine stetige Ableitung ℎ : [0, 1] × 𝑆 gibt, sodass

ℎ(0, 𝑦) = 𝛾(𝑦), ∀𝑦 ∈ 𝑆1 , 𝛾′ := ℎ(1, ·) : 𝑆1 → 𝑆 ist konstant.

Die Definition beschreibt eine Menge, welche keine Löcher beinhaltet. In einfachen Worten gesagt ist laut Defini-
tion eine Menge einfach zusammenhängend, wenn man den Weg, welcher die Menge umschliesst, auf ein Punkt
verkleinern kann, ohne dabei die Menge selbst zu verlassen. Falls die Menge Löcher enthält, so muss der verklei-
nerte Weg durch das Loch durch.

Satz 8.4.1 Charakterisierung der Konservativität mittels partieller Ableitungen, Integrabilitätsbedingung
[Ziltener, 2024]
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(i) Falls 𝑋 konservativ ist, dann erfüllt es die Integrabilitätsbedingung

𝐷𝑖𝑋
𝑗 = 𝐷𝑗𝑋

𝑖 , ∀𝑖 , 𝑗 = 1, ..., 𝑛.

(ii) Falls 𝑈 einfach zusammenhängend ist und weg-zusammenhängend und konvex ist, dann ist 𝑋 kon-
servativ.

(i): Falls das Vektorfeld 𝑋 konservativ ist, dann muss die partielle Ableitung seiner 𝑗-ten Komponente nach der
𝑖-ten Variablen dasselbe Ergebnis liefern wie die partielle Ableitung seiner 𝑖-ten Komponente nach der 𝑗-ten
Variablen.
(ii): Ist selbsterklärend.

Definition 8.4.2: Rotation eines Vektorfeldes [Ziltener, 2024]

(i) Fall 𝑛 = 2 : Sei 𝑈 ⊆ ℝ2 offen und 𝑋 : 𝑈 → ℝ2 ein differenzierbares Vektorfeld. Wir definieren die
(skalare) Rotation (oder Wirbelstärke) von 𝑋 als die reellwertige Funktion

rot 𝑋 := 𝐷1𝑋
2 − 𝐷2𝑋

1 =
𝜕𝑋2

𝜕𝑥1
− 𝜕𝑋1

𝜕𝑥2
: 𝑈 → ℝ.

(ii) Fall 𝑛 = 3: Sei 𝑈 ⊆ ℝ3 offen und 𝑋 : 𝑈 → ℝ3 ein differenzierbares Vektorfeld. Wir definieren die
Rotation von 𝑋 als das Vektorfeld

®rot 𝑋 := ∇ × 𝑋 :=
©­«
𝐷2𝑋

3 − 𝐷3𝑋
2

𝐷3𝑋
1 − 𝐷1𝑋

3

𝐷1𝑋
2 − 𝐷2𝑋

1

ª®¬ : 𝑈 → ℝ3.

8.5 Partielle Ableitungen höherer Ordnung, Taylorpolynom, lokale
Extremalstelle, Hesse-Matrix

Definition 8.5.1: höhere (stetige) partielle Differenzierbarkeit, 𝐶𝑘 [Ziltener, 2024]

Seien 𝑈 ⊆ ℝ𝑛 offen und 𝑘 ∈ ℕ0 = ℕ ∪ {0}.

Wir nennen jede Funktion 𝑓 : 𝑈 → ℝ𝑝 0-mal partiell differenzierbar (keine Bedingung). Ihre (ein-
deutige) partielle Ableitung 0-ter Ordnung ist 𝑓 . Rekurdiv definieren wir für 𝑘 ∈ ℕ:

Eine Funktion 𝑓 : 𝑈 → ℝ𝑝 heisst 𝑘-mal partiell differenzierbar genau dann, wenn sie (𝑘 − 1)-mal
partiell differenzierbar ist und ihre partiellen Ableitungen (𝑘 −1)-ter Ordnung partiell differenzierbar sind.
Die partiellen Ableitungen von 𝑓 𝑘-ter Ordnung sind die Funktionen 𝐷𝑗 𝑔, wobei 𝑗 ∈ {1, ..., 𝑛} und 𝑔 alle
partiellen Ableitungen von 𝑓 (𝑘 − 1)-ter Ordnung durchläuft.

Wir nennen 𝑓 𝑘-mal stetig partiell differenzierbar (oder 𝑘-mal stetig differenzierbar oder schlicht

𝐶𝑘) genau dann, wenn 𝑓 𝑘-mal partiell differenzierbar ist und ihre partiellen Ableitungen k-ter Ordnung
stetig sind. Für 𝑘 ∈ ℕ0 definieren wir die Menge

𝐶𝑘(𝑈,ℝ𝑝) := (𝐶𝑘(𝑈;ℝ𝑝) := {𝐹 : 𝑈 → ℝ𝑝| 𝑓 ist 𝑘-mal stetig partiell differenzierbar}).

Wir nennen 𝑓 beliebig oft stetig partiell differenzierbar (oder 𝐶∞ oder glatt) genau dann, wenn 𝑓 𝐶𝑘 ist
für jedes 𝑘 ∈ ℕ0.

In einfachen Worten gesagt beschreibt diese Definition wie eine Funktion aussieht in Abhängigkeit mit der Diffe-
renzierbarkeit. Je öffter man die Funktion ableiten kann, desto glatter ist die Funktion.
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Satz 8.5.1 Schwarz, Vertauschen partieller Differentiationen [Ziltener, 2024]

Es gilt
𝐷𝑖𝐷𝑗 𝑓 = 𝐷𝑗𝐷𝑖 𝑓 .

Definition 8.5.2: Taylorpolynom [Ziltener, 2024]

Wir definieren das Taylorpolynom von 𝑓 𝑚-ter Ordnung zum Entwicklungspunkt 𝑥0 als die Funktion
𝑇𝑚
𝑓 ,𝑥0

: ℝ𝑛 → ℝ gegeben durch

𝑇𝑚
𝑓 ,𝑥0

(𝑥) :=
𝑚∑
𝑘=0

𝑖1 , ..., 𝑖𝑘 = 1

𝑛
𝐷𝑖𝑘 · · ·𝐷𝑖1 𝑓 (𝑥0)

𝑘∏
𝑗=1

(𝑥 − 𝑥0)𝑖 𝑗

= 𝑓 (𝑥0) +
𝑛∑

𝑖1=1

𝐷𝑖1 𝑓 (𝑥0)(𝑥 − 𝑥0)𝑖1 +
1

2

𝑛∑
𝑖1 ,𝑖2=1

𝐷𝑖2𝐷𝑖1 𝑓 (𝑥0)(𝑥 − 𝑥0)𝑖1(𝑥 − 𝑥0)𝑖2 + · · · +

1

𝑚!

𝑛∑
𝑖1 ,...,𝑖𝑚=1

𝐷𝑖𝑚 · · ·𝐷𝑖1 𝑓 (𝑥0)(𝑥 − 𝑥0)𝑖1 · · · (𝑥 − 𝑥0)𝑖𝑚 .

Ein Taylorpolynom ist eine einfachere Polynomfunktion, die eine komplexere Funktion, insbesondere bei mehreren
Variablen, um einen bestimmten Ëntwicklungspunkt”herum annähert. Es wird konstruiert, indem der Funktions-
wert und alle ihre partiellen Ableitungen (erste, zweite usw. bis zu einer bestimmten Ordnung) an diesem genauen
Punkt berechnet werden. Jeder Term im Polynom nutzt diese Ableitungswerte, um eine zunehmend genauere,
aber immer noch einfache Annäherung des Verhaltens der ursprünglichen Funktion in der Nähe dieses Punktes
zu bilden.
In Vergleich zur Definition in Kapitel ?? bezieht sich diese Definition auf Funktionen mit mehreren Variablen.

Bemerkung:-

Die folgende Proposition beschreibt, wie man das Taylorpolynom kompakter beschreiben kann.

Proposition 8.5.1 Taylorpolynom in Multi-Index-Schreibweise [Ziltener, 2024]

Das Taylorpolynom 𝑇𝑚
𝑓 ,𝑥0

ist gegeben durch

𝑇𝑚
𝑓 ,𝑥0

(𝑥) =
𝑚∑
𝑘=0

∑
𝛼∈ℕ𝑛

0:|𝛼|=𝑘

1

𝛼!
𝐷𝛼 𝑓 (𝑥0)(𝑥 − 𝑥0)𝛼 , ∀𝑥 ∈ ℝ𝑛 .

Lenma 8.5.1 partielle Ableitungen und Multi-Indizes [Ziltener, 2024]

Es gilt
𝑛∑

𝑖1 ,...,𝑖𝑘=1

𝐷𝑖𝑘 · · ·𝐷𝑖1 𝑓 (𝑥0)
𝑘∏
𝑗=1

𝑣𝑖 𝑗 =
∑

𝛼∈ℕ𝑛
0:|𝛼|=𝑘

(
𝑘
𝛼

)
𝐷𝛼 𝑓 (𝑥0)𝑣𝛼 .

Dieses Lemma zeigt, dass die detaillierte Summe über alle möglichen Reihenfolgen von 𝑘-ten partiellen Ableitungen
(linke Seite) mathematisch identisch ist mit der kompakten Darstellung mittels Multi-Indizes (rechte Seite). Der
entscheidende Multinomialkoeffizient auf der rechten Seite zählt dabei genau, wie viele der unterschiedlichen
Reihenfolgen auf der linken Seite zur selben einzigartigen Ableitung führen. So wird eine übersichtlichere und
effizientere Schreibweise für Ausdrücke mit vielen Ableitungen bewiesen, ohne dass sich der Wert der Summe
ändert.

Satz 8.5.2 Taylorformel [Ziltener, 2024]
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Es gibt eine Zahl 𝜃 ∈ (0, 1), sodass gilt

𝑓 (𝑥) = 𝑇𝑚
𝑓 ,𝑥0

(𝑥) +
∑

𝑙𝑎𝑝ℎ𝑎∈ℕ𝑛
0:|𝛼|=𝑚+1

1

𝛼!
𝐷𝛼 𝑓 (𝑥𝜃)(𝑥 − 𝑥0)𝛼 .

Die Taylorformel besagt, dass eine Funktion 𝑓 (𝑥) sich exakt als ihr Taylorpolynom 𝑇𝑚
𝑓 ,𝑥0

(𝑥) darstellen lässt, ergänzt

um einen präzisen Restterm. Dieser Restterm repräsentiert die genaue Differenz zwischen der Funktion und ihrer
Polynomannäherung und sieht ähnlich aus wie der nächste Term der Taylorreihe. Der entscheidende Punkt ist,
dass die Ableitungen im Restterm an einer unbekannten Zwischenstelle 𝑥𝜃 (die zwischen dem Entwicklungspunkt
𝑥0 und 𝑥 liegt) ausgewertet werden, was die genaue Fehlerabschätzung ermöglicht.

Definition 8.5.3: Restglied [Ziltener, 2024]

Wir definieren das Restglied von 𝑓 𝑚-ter Ordnung zum Entwicklungspunkt 𝑥0 als die Funktion

𝑅𝑚
𝑓 ,𝑥0

:= 𝑓 − 𝑇𝑚
𝑓 ,𝑥0

: 𝑈 → ℝ.

Diese Definition entspricht der Definition aus Kapitel ?? mit dem Unterschied, dass es für Funktionen mit meh-
reren Variablen gilt.

Definition 8.5.4: strikte lokale Extremalstelle [Ziltener, 2024]

Wir nennen 𝑥0 eine lokale Minimalstelle von 𝑓 genau dann, wenn es eine Umgebung 𝑉 von 𝑥0 in U gibt,
sodass

𝑓 (𝑥) ⩾ 𝑓 (𝑥0), ∀𝑥 ∈ 𝑉 {𝑥0}.
Wir nennen 𝑥0 eine strikte lokale Minimalstelle von 𝑓 genau dann, wenn es eine Umgebung 𝑉 von 𝑥0 in
U gibt, sodass

𝑓 (𝑥) > 𝑓 (𝑥0), ∀𝑥 ∈ 𝑉 {𝑥0}.
Wir nennen 𝑥0 eine lokale Maximalstelle von 𝑓 genau dann, wenn es eine Umgebung 𝑉 von 𝑥0 in U gibt,
sodass

𝑓 (𝑥) ⩽ 𝑓 (𝑥0), ∀𝑥 ∈ 𝑉 {𝑥0}.
Wir nennen 𝑥0 eine strikte lokale Minimalstelle von 𝑓 genau dann, wenn es eine Umgebung 𝑉 von 𝑥0 in
U gibt, sodass

𝑓 (𝑥) < 𝑓 (𝑥0), ∀𝑥 ∈ 𝑉 {𝑥0}.
Wir nennen 𝑥0 eine (strikte) lokale Extremalstelle von 𝑓 genau dann, wenn 𝑥0 eine (strikte) lokale Mini-
malstelle oder (strikte) lokale Maximalstelle ist.

Wie die vorherige Definition entspricht diese Definition der Definition aus Kapitel ?? mit dem Unterschied, dass
es für Funktionen mit mehreren Variablen gilt.

Definition 8.5.5: kritischer Punkt [Ziltener, 2024]

𝑥0 heisst kritischer (oder stationärer) Punkt von 𝑓 genau dann, wenn die Ableitung von 𝑓 in 𝑥0 verschwin-
det, d. h.

𝑑𝑓 (𝑥0) = 0.

Definition 8.5.6: Hesse-Matrix [Ziltener, 2024]

Wir definieren die Hesse-Matrix von 𝑓 im Punkt 𝑥0 als die quadratische Matrix

Hess 𝑓 (𝑥0) := (𝐷𝑖𝐷𝑗 𝑓 (𝑥0))𝑛𝑖,𝑗=1.

Die Hesse-Matrix ist das multivariate Äquivalent der zweiten Ableitung und beschreibt die ”Krümmungëiner
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Funktion mit mehreren Variablen an einem bestimmten Punkt. Sie ist eine quadratische Matrix, deren Einträge
alle möglichen zweiten partiellen Ableitungen der Funktion sind, ausgewertet am Entwicklungspunkt. Diese Matrix
ist entscheidend, um die Art von lokalen Extrempunkten (Minimum, Maximum oder Sattelpunkt) zu bestimmen.
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Kapitel 9

Umkehrsatz, Satz über implizite
Funktionen, Untermannigfaltigkeit des
Koordinatenraums, Tangentialraum

9.1 𝐶𝑘-Diffeomorphismus, Umkehrsatz

Definition 9.1.1: 𝐶𝑘-Diffeomorphismus [Ziltener, 2024]

Eine Abbildung 𝑓 : 𝑈 → 𝑉 heisst 𝐶𝑘-Diffeomorphismus genau dann, wenn sie bijektiv und 𝐶𝑘 ist und ihre

Umkehrung 𝐶𝑘 ist. Wir nennen einen 𝐶∞-Diffeomorphismus einen glatten Diffeomorphismus oder einfach
einen Diffeomorphismus.

In einfachen Worten gesagt ist ein 𝐶𝑘-Diffeomorphismus eine Funktion, welche bijektiv ist. Des Weiteren gilt,
dass die Funktion selber und seine Inverse zu einem gewissen Grad 𝑘 differenzierbar ist.

Satz 9.1.1 Umkehrsatz [Ziltener, 2024]

Seien 𝑈0 ⊆ ℝ𝑛 offen, 𝑘 ∈ ℕ∪ {∞}, 𝑓 ∈ 𝐶𝑘(𝑈0 ,ℝ
𝑛) und 𝑥0 ∈ 𝑈0 ein Punkt, sodass 𝐷 𝑓 (𝑥0) invertierbar ist.

Dann gibt es eine offene Umgebung 𝑈 ⊆ 𝑈0 von 𝑥0, sodass 𝑓 (𝑈) offen ist und die Einschränkung

𝑓 : 𝑈 → 𝑓 (𝑈)

ein 𝐶𝑘-Diffeomorphismus ist.

Der Umkehrsatz besagt, dass wenn eine 𝐶𝑘-Funktion 𝑓 : 𝑈0 → ℝ𝑛 an einem Punkt 𝑥0 eine invertierbare Ab-
leitung 𝐷 𝑓 (𝑥0) besitzt, dann ist 𝑓 in einer kleinen Umgebung von 𝑥0 lokal umkehrbar. Die existierende lokale

Umkehrfunktion ist ebenfalls 𝐶𝑘-glatt. Folglich ist die Funktion 𝑓 in dieser Umgebung ein 𝐶𝑘-Diffeomorphismus.

9.2 Der Satz über implizite Funktionen

Satz 9.2.1 implizite Funktionen [Ziltener, 2024]

Wir nehmen an, dass
𝑓 (𝑥0 , 𝑦0) = 0, 𝐷𝑦 𝑓 (𝑥0 , 𝑦0) invertierbar ist.

Die folgenden Aussagen gelten:

• Es gibt offene Umgebungen 𝑈 von 𝑥0 und 𝑉 von 𝑦0 ind eine Abbildung

𝑔 ∈ 𝐶𝑘(𝑈,𝑉),
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sodass
𝑈 ×𝑉 ⊆ 𝑊,

𝑓 −1(0) ∩ (𝑈 ×𝑉) = gr(𝑔) = {(𝑥, 𝑔(𝑥))|𝑥 ∈ 𝑈},
𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥)) invertierbar ist, ∀𝑥 ∈ 𝑈.

(gr(g) = Graph von g)

(ii) Seien 𝑈,𝑉 und 𝑔 wie in (i) und 𝑥 ∈ 𝑈. Dann gilt

𝐷𝑔(𝑥) = −(𝐷𝑦 𝑓 (𝑥, 𝑔(𝑥)))−1𝐷𝑥 𝑓 (𝑥, 𝑔(𝑥)).

Das Implizite Funktionentheorem besagt, dass wenn eine Funktion 𝑓 (𝑥, 𝑦) = 0 an einem Punkt (𝑥0 , 𝑦0) erfüllt
ist und die partielle Ableitung 𝐷𝑦 𝑓 (𝑥0 , 𝑦0) dort invertierbar ist, Dann existiert lokal um (𝑥0 , 𝑦0) eine eindeutige,
glatte Funktion 𝑔, die 𝑦 als Funktion von 𝑥 definiert, sodass 𝑓 (𝑥, 𝑔(𝑥)) = 0 gilt. Des Weiteren liefert das Theorem
eine Formel, um die Ableitung von 𝑔(𝑥) mithilfe der partiellen Ableitungen von 𝑓 zu berechnen.

9.3 Untermannigfaltigkeiten des Koordinatenraums

Definition 9.3.1: Untermannigfaltigkeiten des Koordinatenraums [Ziltener, 2024]

Seien 𝑛 ∈ ℕ0 = ℕ ∪ {0}, 𝑀 ⊆ ℝ𝑛 eine Teilmenge, 𝑘 ∈ ℕ ∪ {∞} und 𝑑 ∈ {0, ..., 𝑛}.

Sei 𝑥0 ∈ 𝑀. Wir sagen, dass 𝑀 um 𝑥0 eine d-dimensionale 𝐶𝑘-Untermannigfaltigkeit des ℝ𝑛 ist
genau dann, wenn es eine offene Umgebung 𝑈 ⊆ ℝ𝑛 von 𝑥0, eine Permutation 𝜎 von {1, ..., 𝑛}, eine offene
Teilmenge 𝑉 ⊆ ℝ𝑑 und eine Funktion 𝑓 ∈ 𝐶𝑘(𝑉,ℝ𝑛−𝑑 gibt, sodass

{(𝑥𝜎(1) , ..., 𝑥𝜎(𝑛))|𝑥 ∈ 𝑀 ∪𝑈} = gr( 𝑓 ) = {(𝑦, 𝑓 (𝑦))|𝑦 ∈ 𝑉}.

Wir nennen𝑀 eine 𝑑-dimensionale 𝐶𝑘-Untermannigfaltigkeit desℝ𝑛 genau dann, wenn𝑀 diese Bedingung
für jedes 𝑥0 ∈ 𝑀 erfüllt. In Fall 𝑘 = ∞ nennen wir eine solche Teilmenge 𝑀 eine glatte (d-dimensionale)
Untermannigfaltigkeit des ℝ𝑛 .

In einfachen Worten gesagt ist eine Untermannigfaltigkeit eine Menge, welche zu einem gewissen Grad 𝑘 differen-
zierbar ist und eine kleinere Dimension hat als die Dimension des Koordinatenraums.

9.4 Immersionen, Einbettungen, Submersionen, Charakterisierung von
Untermannigfaltigkeiten

Definition 9.4.1: Immersion, Submersion, Einbettung [Ziltener, 2024]

Seien 𝑛, 𝑝 ∈ ℕ0 , 𝑘 ∈ ℕ ∪ {∞}, 𝑈 ⊆ ℝ𝑛 offen und 𝑓 : 𝑈 → ℝ𝑝 .

Sei 𝑥 ∈ 𝑈 ein Punkt, in dem 𝑓 differenzierbar ist. Wir sagen, dass 𝑓 ein Punkt 𝑥 eine Immersion
ist genau dann, wenn 𝐷 𝑓 (𝑥) injektiv ist. Wir sagen, dass 𝑓 im Punkt 𝑥 eine Submersion ist genau dann,

wenn 𝑓 in jedem Punkt eine Immersion / Submersion ist. Wir nennen 𝑓 eine 𝐶𝑘-Einbettung genau dann,

wenn 𝑓 injektiv, 𝐶𝑘 und eine Immersion ist und 𝑓 −1 : 𝑓 (𝑈) → 𝑈 stetig ist.

Eine Funktion ist an einem Punkt eine Immersion, wenn ihre Ableitung dort injektiv ist, was bedeutet, dass sie
die lokale Dimension des Raumes nicht reduziert. Eine Submersion hingegen hat an einem Punkt eine surjektive
Ableitung und ”bedeckt”den Zielraum lokal vollständig, was oft eine Dimensionsreduktion bedeutet. Eine Einbet-
tung ist eine injektive, glatte Immersion, deren Umkehrfunktion ebenfalls stetig ist, wodurch sie eine topologisch
treue”Kopie des Ursprungsraums im Zielraum bildet.
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9.5 Satz von regulären Wert

Definition 9.5.1: regulärer Wert [Ziltener, 2024]

Wir nennen 𝑧0 einen regulären Wert für 𝑔 genau dann, wenn 𝑔 eine Submersion ist in jedem Punkt von

𝑔−1(𝑧0) = {𝑥 ∈ 𝑈0|𝑔(𝑥) = 𝑧0}.

Sonst nennen wir 𝑧0 einen singulären Wert für 𝑔.

Ein Wert 𝑧0 heisst regulärer Wert für eine Funktion 𝑔, wenn 𝑔 in jedem Punkt ihrer Urbildmenge 𝑔−1(𝑧0)
eine Submersion ist. Das bedeutet intuitiv, dass die Funktion 𝑔 an allen diesen Punkten lokal ”gutartigünd
äusbreitend̈ıst und keine ”degenerierteÄbbildung besitzt. Als Konsequenz bildet die Urbildmenge 𝑔−1(𝑧0) selbst
eine ”glatteSStruktur (wie eine Mannigfaltigkeit). Ist dies an mindestens einem Punkt von 𝑔−1(𝑧0) nicht der Fall,
so wird 𝑧0 als singulärer Wert bezeichnet.

Satz 9.5.1 Satz vom regulären Wert [Ziltener, 2024]

Das Urbild jedes regulären Wertes für g ist eine 𝐶𝑘-Untermannigfaltigkeit des ℝ𝑛 der Dimension 𝑛 − 𝑝.

Der Satz besagt, dass das Urbild 𝑔−1(𝑧0) eines regulären Wertes 𝑧0 unter einer Funktion 𝑔 stets eine glatte
Untermannigfaltigkeit ist. Dies bedeutet, dass die Menge der Punkte, die auf 𝑧0 abgebildet werden, lokal wie ein
flacher euklidischer Raum aussieht. Die Dimension dieser Untermannigfaltigkeit ist dabei präzise 𝑛 − 𝑝, wobei 𝑛
die Dimension des Definitionsbereichs und 𝑝 die Dimension des Wertebereichs von 𝑔 ist.

9.6 Tagentialraum an eine Untermannigfaltigkeit

Definition 9.6.1: Tagentialraum [Ziltener, 2024]

Seien 𝑛 ∈ ℕ0 , 𝑀 ⊆ ℝ𝑛 eine 𝐶1-Untermannigfaltigkeit und 𝑥0 ∈ 𝑀.

Wir definieren 𝑇𝑥0𝑀, den Tangentialraum an 𝑀 in Punkt 𝑥0 als die Menge

𝑇𝑥0𝑀 := { ¤𝑥(0)|𝑊 ⊆ ℝ offen, 𝑥 :𝑊 → ℝ𝑛 :

0 ∈𝑊, 𝑥(0) = 𝑥0 , 𝑥(𝑡) ∈ 𝑀, ∀𝑡 ∈𝑊, 𝑥 differenzierbar in 0}.

Wir nennen die Elemente von 𝑇𝑥0𝑀 Tagentialvektoren an 𝑀 in Punkt 𝑥0.

Der Tangentialraum 𝑇𝑥0𝑀 an eine 𝐶1-Untermannigfaltigkeit 𝑀 im Punkt 𝑥0 ist die Menge aller Geschwindig-
keitsvektoren ¤𝑥(0) von glatten Kurven 𝑥(𝑡), die in 𝑥0 beginnen und für kleine 𝑡 vollständig auf 𝑀 liegen.

Satz 9.6.1 Charakterisierung des Tangentialraumes [Ziltener, 2024]

(i) Seien 𝑈 ⊆ ℝ𝑛 eine offene Umgebung von 𝑥0 , 𝑉 ⊆ ℝ𝑑 offen und 𝑓 ∈ 𝐶1(𝑉,ℝ𝑛−𝑑) so, dass
𝑀 ∩𝑈 = gr( 𝑓 ) = {(𝑦, 𝑓 (𝑦))|𝑦 ∈ 𝑉}.

Wir bezeichnen die erste Komponente von 𝑥0 ∈ ℝ𝑑 ×ℝ𝑛−𝑑 mit 𝑦0. Es gilt

𝑇𝑥0𝑀 = gr(𝐷 𝑓 (𝑦0)).

(ii) Seien 𝑉 ⊆ ℝ𝑑 offen, 𝑦0 ∈ 𝑉,𝑈 ⊆ ℝ𝑛 eine offene Umgebung von 𝑥0 und 𝜓 : 𝑉 → ℝ𝑛 so, dass

𝜓(𝑦0) = 𝑥0 , 𝜓(𝑉) = 𝑀 ∩𝑈.
und 𝜓 im Punkt 𝑦0 eine Immersion ist. Dann gilt

𝑇𝑥0𝑀 = im(𝐷𝜓(𝑦0)).
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(iii) Seien 𝑈 ⊆ ℝ𝑛 eine offene Umgebung von 𝑥0 und 𝑔 : 𝑈 → ℝ𝑝=𝑛−𝑑 so, dass

𝑀 ∩𝑈 = 𝑔−1(𝑔(𝑥0)).

und 𝑔 im Punkt 𝑥0 eine Submersion ist. Dann gilt

𝑇𝑥0𝑀 = ker(𝐷𝑔(𝑥0)) = 𝐷𝑔(𝑥0)−1(0).

Dieses Theorem bietet drei verschiedene Wege, den Tangentialraum 𝑇𝑥0𝑀 zu bestimmen – das ist die Menge aller
ërlaubtenRichtungen, in die man sich auf der Mannigfaltigkeit 𝑀 am Punkt 𝑥0 bewegen kann.
Wenn 𝑀 als Graph beschrieben wird: Ist die Mannigfaltigkeit 𝑀 lokal der Graph einer Funktion 𝑓 , so ist ihr
Tangentialraum 𝑇𝑥0𝑀 der Graph der Ableitung 𝐷 𝑓 (𝑦0) von 𝑓 . Das bedeutet, die Tangentialebene ist die beste
lineare Annäherung des Graphen an diesem Punkt.
Wenn 𝑀 durch eine Parametrisierung gegeben ist: Wird 𝑀 lokal durch eine Parametrisierung 𝜓 beschrieben, die
eine Immersion ist, dann ist der Tangentialraum 𝑇𝑥0𝑀 das Bild (der Wertebereich) der Ableitung 𝐷𝜓(𝑦0). Der
Tangentialraum wird also von den ”Geschwindigkeitsvektoren”der Parametrisierung aufgespannt.
Wenn 𝑀 als Niveaumenge beschrieben wird: Ist 𝑀 lokal eine Niveaumenge einer Funktion 𝑔, die eine Submersion
ist, so ist der Tangentialraum 𝑇𝑥0𝑀 der Kern (Nullraum) der Ableitung 𝐷𝑔(𝑥0). Das bedeutet, die Vektoren im
Tangentialraum stehen senkrecht zu den Gradientenvektoren der Funktion 𝑔.

9.7 Tangentialabbildung

Definition 9.7.1: 𝐶𝑘-Eigenschaft, allgemeiner Definitionsbereich [Ziltener, 2024]

Wir sagen, dass 𝑓 um Punkt 𝑥0 𝐶
𝑘 ist genau dann, wenn es eine offene Umgebung 𝑈 ⊆ ℝ𝑛 von 𝑥0 und

eine Abbildung 𝐹 ∈ 𝐶𝑘(𝑈,ℝ𝑝) gibt, sodass

𝐹 = 𝑓 auf 𝑆 ∩𝑈.

Wir sagen, dass 𝑓 𝐶𝑘 ist genau dann, wenn diese Bedingung für jeden Punkt 𝑥0 ∈ 𝑆 erfüllt ist.
Wir definieren

𝐶𝑘(𝑆,ℝ𝑝) := {𝐶𝑘-Abbildung von 𝑆 nach ℝ𝑝}.

Die 𝐶𝑘-Eigenschaft für eine Funktion 𝑓 auf einem beliebigen Definitionsbereich 𝑆 wird über eine lokale Ërweiter-

barkeit”definiert. Sie besagt, dass 𝑓 um einen Punkt 𝑥0 ∈ 𝑆 𝐶𝑘 ist, wenn es in einer offenen Umgebung von 𝑥0
eine ”gewöhnliche”𝐶𝑘-Funktion 𝐹 gibt, die auf dem Schnittpunkt mit 𝑆 genau mit 𝑓 übereinstimmt. Ist diese

Bedingung für jeden Punkt in 𝑆 erfüllt, so gilt die Funktion 𝑓 insgesamt als 𝐶𝑘 auf 𝑆.

Definition 9.7.2: Tangentialabbildung [Ziltener, 2024]

Wir definieren die Tangentialabbildung (oder Ableitung) von 𝑓 im Punkt 𝑥0 als

𝐷 𝑓 (𝑥0) := 𝐷𝐹(𝑥0)|𝑇𝑥0𝑀 → 𝑇𝑓 (𝑥0)𝑁 ,

wobei 𝑈 ⊆ ℝ𝑛 eine offene Umgebung von 𝑥0 und 𝐹 ∈ 𝐶1(𝑈,ℝ𝑝) eine Fortsetzung von 𝑓 |𝑀∩𝑈 ist.

Die Tangentialabbildung 𝐷 𝑓 (𝑥0) ist die Ableitung einer Funktion 𝑓 : 𝑀 → 𝑁 an einem Punkt 𝑥0 ∈ 𝑀. Sie
wird definiert, indem man die Standardableitung 𝐷𝐹(𝑥0) einer lokalen 𝐶1-Fortsetzung 𝐹 von 𝑓 auf einer offenen
Umgebung von 𝑥0 betrachtet. Diese Abbildung 𝐷𝐹(𝑥0) wird dann auf den Tangentialraum 𝑇𝑥0𝑀 eingeschränkt
und bildet Vektoren in den Tangentialraum 𝑇𝑓 (𝑥0)𝑁 ab.
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9.8 kritische Punkte einer Funktion auf einer Untermannigfaltigkeit
von ℝ𝑛, Lagrange Multiplikationsregel

Definition 9.8.1: kritischer Punkt [Ziltener, 2024]

Ein Punkt 𝑥0 ∈ 𝑀 heisst kritischer (oder stationärer) Punkt für 𝑓 genau dann, wenn die Tagentialabbildung
von 𝑓 in 𝑥0 verschwindet, d. h.

𝐷 𝑓 (𝑥0) = 0.

Wir schreiben
Crit 𝑓 := {kritische Punkte für 𝑓 }.

Definition 9.8.2: Lagrangefunktion [Ziltener, 2024]

Wir definieren die Lagrangefunktion für (𝐹, 𝑔) als die Funktion

𝐿 := 𝐿𝐹,𝑔 : 𝑈 ×ℝ𝑝 → ℝ, 𝐿(𝑥,𝜆) := 𝐹(𝑥) − 𝜆𝑇 𝑔(𝑥).

Die Lagrangefunktion 𝐿(𝑥,𝜆) = 𝐹(𝑥) − 𝜆𝑇 𝑔(𝑥) ist ein mathematisches Werkzeug, das eine Zielfunktion 𝐹(𝑥) mit
Nebenbedingungen 𝑔(𝑥) = 0 kombiniert. Sie führt dabei neue Variablen, die Lagrange- Multiplikatoren 𝜆, ein, um
die Verletzung der Nebenbedingungen zu ”bestrafen”. Ihr Hauptzweck ist es, ein eingeschränktes Optimierungs-
problem in ein unbeschränktes umzuwandeln, dessen kritische Punkte die Lösungen des ursprünglichen Problems
beinhalten können.

Satz 9.8.1 Lagrange-Multiplikationsregel [Ziltener, 2024]

Wir nehmen an, dass 0 ein regulärer Wert von 𝑔 ist. Sei 𝑥0 ∈ 𝑈. Dann gilt 𝑥0 ∈ Crit 𝑓 genau dann, wenn
es ein 𝜆 ∈ ℝ𝑝 gibt, sodass (𝑥0 ,𝜆) ∈ Crit 𝐿.

Die Lagrange-Multiplikationsregel besagt, dass ein Punkt 𝑥0 genau dann ein kritischer Punkt einer Zielfunk-
tion unter den Nebenbedingungen 𝑔(𝑥) = 0 ist, wenn es einen Vektor 𝜆 von Lagrange-Multiplikatoren gibt,
sodass (𝑥0 ,𝜆) ein kritischer Punkt der zugehörigen Lagrangefunktion 𝐿(𝑥,𝜆) ist. Diese Äquivalenz ermöglicht es,
eingeschränkte Optimierungsprobleme durch das Auffinden der kritischen Punkte der unbeschränkten Lagrange-
funktion zu lösen. Die Regel setzt dabei voraus, dass 0 ein regulärer Wert der Nebenbedingungsfunktion 𝑔 ist,
was eine ”Wohlgeformtheit” der Nebenbedingungen sicherstellt.
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Kapitel 10

Mehrdimensionale
Riemann-integration, Satz von Fubini
über wiederholte Integration,
Jordan-Mass, Substitutionsregel für
mehrdimensionale Integrale
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10.1 Riemann-Integral

Definition 10.1.1: eigentliches Riemann-Integral [Ziltener, 2024]

(i) Ein 𝑛-dimensionaler (beschränkter) Quader (oder Rechtkant) ist ein Produkt der Form

𝑅 =

𝑛∏
𝑖=1

𝐼𝑖 = 𝐼1 × · · · × 𝐼𝑛 .

wobei 𝐼1 , ..., 𝐼𝑛 beschränkte Intervalle sind. Diese dürfen offen, abgeschlossen oder halb-offen sein.

(i) Wir schreiben die Länge eines Intevalls 𝐼 als |𝐼|. Wir definieren den (𝑛-dimensionalen) Inhalt (oder

das (𝑛-dimensionale) Volumen) eines Quaders 𝑅 =

𝑛∏
𝑖=1

𝐼𝑖 als

vol(𝑅) := vol𝑛(𝑅) = |𝑅| :=
𝑛∏
𝑖=1

|𝐼1| = |𝐼1| · · · |𝐼𝑛|.

Sei 𝑅 ⊆ ℝ𝑛 ein Quader.

(iii) Wir nennen 𝜑 : 𝑅 → ℝ eine Treppenfunktion genau dann, wenn 𝜑 eine endliche Linearkombination
von Indikatorfunktionen von 𝑛-dimensionalen Quadern ist.

(iv) Sei ℛ eine endliche Kollektion (=Menge) von Quadern, die in 𝑅 enthalten sind, und 𝑐𝑞 ∈ ℝ für
𝑄 ∈ ℛ. Wir definieren das Riemann-Integral der Treppenfunktion

𝜑 :=
∑
𝑄∈ℛ

𝑐𝑄𝜒𝑄

als ∫
𝑅

𝜑(𝑥)𝑑𝑥 :=
∑
𝑄∈ℛ

𝑐𝑄 |𝑄|.

(v) Sei 𝑓 : 𝑅 → ℝ eine beschränkte Funktion. Wir definieren das untere und das obere Riemann-Integral
von 𝑓 (über R) als∫

𝑅

𝑓 (𝑥)𝑑𝑥 := sup{
∫
𝑅

𝜑(𝑥)𝑑𝑥|𝜑𝑅 → ℝ Treppenfunktion ⩽ 𝑓 },

∫
𝑅

𝑓 (𝑥)𝑑𝑥 := inf{
∫
𝑅

𝜓(𝑥)𝑑𝑥|𝜓 : 𝑅 → ℝ Treppenfunktion ⩾ 𝑓 }.

Wir nennen 𝑓 eigentlich Riemann-integrierbar (über 𝑅) genau dann, wenn∫
𝑅

𝑓 (𝑥)𝑑𝑥 ⩾
∫
𝑅

𝑓 (𝑥)𝑑𝑥.

In diesem Fall definieren wir das Riemann-Integral von 𝑓 (über 𝑅) als∫
𝑅

𝑓 (𝑥)𝑑𝑥 :=

∫
𝑅

𝑓 (𝑥)𝑑𝑥.

Die obige Definition enstpricht der Definition aus Kapitel 6.1 bloss erweitern auf mehreren Dimensionen.
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10.2 Eigenschaften des Riemann-Integrals

Proposition 10.2.1 Riemann-Integration [Ziltener, 2024]

(i) (unteres und oberes Integral) Es gilt ∫
𝑅

𝑓 (𝑥)𝑑𝑥 ⩽
∫
𝑅

𝑓 (𝑥)𝑑𝑥.

(ii) (Charakterisierung der Riemann-Integrierbarkeit) 𝑓 ist Riemann-integrierbar genau dann, wenn es
für jedes 𝜖 > 0 Treppenfunktionen 𝜑,𝜓 : 𝑅 → ℝ gibt, sodass

𝜑 ⩽ 𝑓 ⩽ 𝜓,∫
𝑅

𝜓(𝑥)𝑑𝑥 −
∫
𝑅

𝜑(𝑥)𝑑𝑥 < 𝜖.

(iii) (Treppenfunktion integrierbar) jedes Treppenfunktion 𝑓 = 𝜑 ist Riemann-integrierbar. Ihre Riemann-
Integral stimmt mit der Definition aus Kapitel 10.1 überein.

(iv) (stetige Funktion Riemann-integrierbar) Falls 𝑅 abgeschlossen (und beschränkt) ist und 𝑓 stetig,
dann ist 𝑓 Riemann-integrierbar.

(v) (Monotonie) Falls 𝑓 ⩽ 𝑔, dann gilt ∫
𝑅

𝑓 (𝑥)𝑑𝑥 ⩽
∫
𝑅

𝑔(𝑥)𝑑𝑥.

(vi) (Linearität) 𝑐 𝑓 und 𝑓 + 𝑔 sind Riemann-integrierbar und∫
𝑅

𝑐 𝑓 (𝑥)𝑑𝑥 = 𝑐

∫
𝑅

𝑓 (𝑥)𝑑𝑥,∫
𝑅

( 𝑓 + 𝑔)(𝑥)𝑑𝑥 =

∫
𝑅

𝑓 (𝑥)𝑑𝑥 +
∫
𝑅

𝑔(𝑥)𝑑𝑥.

(vii) Das Produkt zweier Riemann-integrierbarer Funktionen ist Riemann-integrierbar.

(viii) (Minimum, Maximum, Absolutbetrag) min{ 𝑓 , 𝑔},max{ 𝑓 , 𝑔} und | 𝑓 | sind Riemann-integrierbar, und
es gilt ���� ∫

𝑅

𝑓 𝑑𝑥

���� ⩽ ∫
𝑅

| 𝑓 |𝑑𝑥.

Diese Proposition erweitert den Satz aus Kapitel 6.2 auf mehrdimensionale Räume.

10.3 Satz von Fubini, wiederholte Integration

Satz 10.3.1 Satz von Fubini [Ziltener, 2024]

Seien 𝑄 ⊆ ℝ𝑚 und 𝑅 ⊆ ℝ𝑛 Quader und 𝑓 : 𝑄 × 𝑅 → ℝ.

Wir nehmen an, dass 𝑓 Riemann-integrierbar ist. Dann sind die Funktionen

𝑅 ∋ 𝑧 ↦→
∫
𝑄

𝑓 (𝑦, 𝑧)𝑑𝑦 ∈ ℝ,
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𝑅 ∋ 𝑧 ↦→
∫
𝑄

𝑓 (𝑦, 𝑧)𝑑𝑦 ∈ ℝ

Riemann-integrierbar, und∫
𝑄×𝑅

𝑓 (𝑥)𝑑𝑥 =

∫
𝑅

∫
𝑄

𝑓 (𝑦, 𝑧)𝑑𝑦𝑑𝑧 =
∫
𝑅

∫
𝑄

𝑓 (𝑦, 𝑧)𝑑𝑦𝑑𝑧.

Der Satz von Fubini besagt, dass das Integral einer Riemann-integrierbaren Funktion über einem Produktbereich
(wie 𝑄×𝑅) durch iterierte Integration berechnet werden kann. Hierbei sind die Funktionen, die durch das Fixieren
einer Variable entstehen, selbst Riemann-integrierbar. Dies erlaubt es, die Gesamtintegration schrittweise über
jede Variable durchzuführen und die Reihenfolge der Integration zu vertauschen, ohne das Ergebnis zu ändern.

10.4 Jordan-Mass

Definition 10.4.1: Jordan-Mass [Ziltener, 2024]

Eine Teilmenge 𝑆 ⊆ ℝ𝑛 heisst Jordan-messbar (oder Jordan-Bereich) genau dann, wenn 1𝑆 Riemann-
integrierbar ist. In diesem Fall definieren wir ihr Jordan-Mass (oder ihren Jordan-Inhalt) als

vol(𝑆) := vol𝑛(𝑆) := |𝑆| :=
∫
𝑆

1𝑑𝑥.

In einfachen Worten gesagt ist das Jordan-Mass eine sehr formelle Art das Volumen, die Fläche oder die Länge
zu berechnen.

10.5 Substitutionsregel, Integral einer drehinvarianten Funktion, Trans-
formationssatz für das Volumen

Satz 10.5.1 Substitutionsregel für ein mehrdimensionales Integral [Ziltener, 2024]

Seien 𝑈,𝑉 ⊆ ℝ𝑚 offen, 𝜓 : 𝑉 → 𝑈 ein 𝐶1-Diffeomorphismus, 𝑆 ⊆ ℝ𝑛 eine beschränkte Teilmenge, sodass
𝑆̄ ⊆ 𝑈 und 𝑓 : 𝑆 → ℝ. Dann gilt:

(i) 𝑓 ist Riemann-integrierbar (über 𝑆) genau dann, wenn

( 𝑓 ◦ 𝜓)|det𝐷𝜓| : 𝜓−1(𝑆) → ℝ

Riemann-integrierbar ist.

(ii) In diesem Fall gilt, dass ∫
𝑆

𝑓 (𝑥)𝑑𝑥 =

∫
𝜓−1(𝑆)

( 𝑓 ◦ 𝜓)(𝑦)|det𝐷𝜓(𝑦)|𝑑𝑦.

In manchen Fällen ist es einfacher, eine Funktion über einen anderen Koordinatenraum zu integrieren. (kartesisch,
polar, etc.) Die Substitutionsregel für ein mehrdimensionales Integral erlaubt dies. Man muss jedoch beachten,
dass man die Jakobische Determinante (Skalierungsfaktor) miteinbezieht, da beim wechsel des Koordinatenraumes
die Funktion gestreckt bzw. gestaucht wird.
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Korollar 10.5.1 Integral einer drehinvarianten Funktion [Ziltener, 2024]

Es gilt, dass ∫
𝐵̄2
𝑟0

𝑓 (𝑥)𝑑𝑥 = 2𝜋

∫ 𝑟0

0

𝑓 (𝑟)𝑟𝑑𝑟..

Dieses Korollar vereinfacht die Berechnung von Integralen drehinvarianter Funktionen über einer Kreisscheibe
(einem Kreisbereich in ℝ2). Da der Funktionswert solcher Funktionen nur vom Abstand zum Ursprung abhängt,
kann man sie als reine Funktion des Radius 𝑓 (𝑟) darstellen. Das zweidimensionale Integral über die Kreisscheibe
wird dadurch in ein einfaches eindimensionales Integral über den Radius umgewandelt, wobei der Faktor 2𝜋 (für
den vollen Winkelbereich) und der Jacobi-Term 𝑟 (für die Flächenskalierung) berücksichtigt werden.

Korollar 10.5.2 Transformationssatz für das Volumen [Ziltener, 2024]

Seien 𝑈,𝑉 ⊆ ℝ𝑛 offen, 𝜓 : 𝑉 → 𝑈 ein 𝐶1-Diffeomorphismus und 𝐴 eine Jordan-messbare Menge, sodass
𝐴̄ ⊆ 𝑉. Dann ist 𝜓(𝐴) Jordan-messbar mit

|𝜓(𝐴)| =
∫
𝐴

|det(𝐷𝜓(𝑦))|𝑑𝑦.

Dieser Transformationssatz ermöglicht die Berechnung des Volumens (oder Flächeninhalts) einer durch eine
Diffeomorphismus-Abbildung 𝜓 transformierten Menge 𝜓(𝐴). Anstatt das Integral über die potenziell kom-
plexe transformierte Menge 𝜓(𝐴) zu bilden, berechnet man das Volumen, indem man den Betrag der Jacobi-
Determinante von 𝜓 über die ursprüngliche, oft einfachere Menge 𝐴 integriert. Die Jacobi-Determinante fungiert
dabei als lokaler Skalierungsfaktor, der die Volumenänderung durch die Transformation korrekt berücksichtigt.
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Kapitel 11

Vektorfelder und die Sätze von Green,
Stokes und Gauss

11.1 Kurvenintegral, Orientierung, 𝐶𝑘-Gebiet

Definition 11.1.1: Kurvenintegral einer Funktion [Ziltener, 2024]

Eine (eingebettete) 𝐶𝑘-Kurve in ℝ𝑛 ist eine 𝐶𝑘-Untermannigfaltigkeit des ℝ𝑛 der Dimension 1.

Sei 𝐶 ⊆ ℝ𝑛 eine kompakte 𝐶1-Kurve.

Es gilt:

(i) Es gibt ein 𝑙 ∈ ℕ0 und für jedes 𝑗 = 1, ..., 𝑙 ein kompaktes Intervall 𝐼𝑗 positiver Länge und eine

Immersion 𝑥 𝑗 ∈ 𝐶1(𝐼 𝑗 ,ℝ𝑛), sodass
𝑙⋃
𝑗=1

𝑥 𝑗(𝐼 𝑗) = 𝐶

und so, dass die Abbildung ⋃
𝑗

{ 𝑗} × Int 𝐼 𝑗 ∋ (𝑗 , 𝑡) ↦→ 𝑥 𝑗(𝑡) ∈ 𝐶

injektiv ist. (Dabei bezeichnet Int 𝐼𝑗 das Innere von 𝐼 𝑗)

Seien jetzt 𝑓 : 𝐶 → ℝ eine stetige Funktion und 𝑙 und (𝐼 𝑗 , 𝑥 𝑗)𝑗=1,...,𝑙 . Wir definieren

𝐼( 𝑓 , (𝐼𝑗 , 𝑥 𝑗)𝑗) :=
𝑙∑
𝑗=1

∫
𝐼𝑗

𝑓 ◦ 𝑥 𝑗(𝑡)|| ¤𝑥 𝑗(𝑡)||𝑑𝑡.

(ii) Die Zahl 𝐼( 𝑓 , (𝐼 𝑗 , 𝑥 𝑗)𝑗) hängt nicht von (𝐼𝑗 , 𝑥 𝑗)𝑗 ab.

Wir definieren das (Kurven-)Integral von 𝑓 über 𝐶 als∫
𝐶

𝑓 𝑑𝑠 := 𝐼( 𝑓 , (𝐼 𝑗 , 𝑥 𝑗)𝑗).

Ein Kurvenintegral summiert die Werte einer stetigen Funktion entlang eines glatten Pfades (einer 𝐶1-Kurve)
im Raum. Dazu wird die Kurve in parametrisierbare Abschnitte unterteilt, und die Funktion wird entlang jedes
Abschnitts über seine Bogenlänge integriert. Der resultierende Gesamtwert ist dabei unabhängig davon, wie die
Kurve in Abschnitte zerlegt oder wie diese parametrisiert werden.
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Definition 11.1.2: Einheitstangentialvektorfeld [Ziltener, 2024]

Ein Einheitstangentialvektorfeld längs 𝐶 (oder eine Orientierung von 𝐶) ist eine stetige Abbildung 𝑇 :
𝐶 → ℝ𝑛 , sodass

𝑇(𝑥) ∈ 𝑇𝑥𝐶,||𝑇(𝑥)|| = 1, ∀𝑥 ∈ 𝐶.

Ein Einheitstangentialvektorfeld längs einer Kurve 𝐶 ist eine stetige Zuordnung, die jedem Punkt 𝑥 auf der Kurve
einen Vektor 𝑇(𝑥) zuweist. Dieser Vektor 𝑇(𝑥) zeigt dabei stets tangential zur Kurve und hat eine Länge von genau
Eins. Durch diese konsistente Zuweisung eines Richtungsvektors definiert das Feld eine eindeutige Orientierung
für die Kurve.

Definition 11.1.3: Kurvenintegral eines Vektorfeldes [Ziltener, 2024]

Wir nehmen an, dass 𝐶 kompakt ist. Wir definieren das (Kurven-)Integral (oder das Ringintegral oder die
Zirkulation) von 𝑋 über 𝐶 bezüglich 𝑇 als∫

𝐶,𝑇

𝑋 · 𝑑s :=
∫
𝐶

𝑋 · 𝑇𝑑𝑠,

wobei die rechte Seite das Kurvenintegral der Funktion 𝑋 · 𝑇 : 𝐶 → ℝ bezeichnet.

Das Kurvenintegral eines Vektorfeldes summiert den Einfluss eines Vektorfeldes 𝑋 entlang einer bestimmten
Kurve 𝐶. Es berechnet, wie viel des Feldes 𝑋 an jedem Punkt in Richtung der Kurve (𝑇) wirkt (dies ist das
Skalarprodukt 𝑋 ·𝑇). Dieser gerichtete Anteil wird dann über die gesamte Länge der Kurve aufsummiert, um den
Gesamteffekt des Feldes entlang des Weges zu erhalten.

Definition 11.1.4: 𝐶𝑘-Gebiet [Ziltener, 2024]

Ein (𝑛-dimensionales) 𝐶𝑘-Gebiet ist eine offene Teilmenge 𝑈 ⊆ ℝ𝑛 , sodass es für jeden Punkt 𝑥0 ∈ 𝜕𝑈
eine offene Umgebung 𝑈 𝑖 von 𝑥0 und eine 𝐶𝑘-Submersion 𝑔 : 𝑈 ′ → ℝ gibt, sodass

𝑔(𝑥0) = 0, 𝑈 ∩𝑈 ′ = 𝑔−1((−∞, 0)) = {𝑥 ∈ ℝ𝑛|𝑔(𝑥) < 0}.

Ein 𝐶𝑘-Gebiet ist eine offene Menge, deren Rand eine bestimmte Glattheitsstufe 𝑘 aufweist. Dies bedeutet, dass
man den Rand lokal durch eine 𝐶𝑘-glatte Funktion 𝑔 beschreiben kann, wobei 𝑔(𝑥) = 0 auf dem Rand, 𝑔(𝑥) < 0
innerhalb des Gebiets und 𝑔(𝑥) > 0 ausserhalb gilt. Die ”Submersion”- Bedingung stellt dabei sicher, dass der
Rand nirgendwo flacḧıst und eine klare Trennung zwischen innen und aussen ermöglicht.

Definition 11.1.5: positive Orientierung des Randes [Ziltener, 2024]

Sei 𝑈 ⊆ ℝ2 ein 𝐶1 − 𝐺𝑒𝑏𝑖𝑒𝑡. Wir definieren die positive Orientierung von 𝜕𝑈 (bezüglich 𝑈),

𝑇 : 𝜕𝑈 → ℝ2 ,

wie folgt. Seien 𝑥0 ∈ 𝜕𝑈 und 𝑈 ′, 𝑔 wie in der obigen Definition. Wir definieren 𝑇(𝑥0) ∈ 𝑇𝑥0𝜕𝑈 als den
eindeutigen Vektor der Länge 1, sodass das (geordnete) Paar (∇𝑔(𝑥0), 𝑇(𝑥0)) eine positive Basis von ℝ2

ist.

Einfach gesagt ist die positive Orientierung des Randes, wenn man im Gegenuhrzeigersinn entlang des Randes
einer Menge geht.
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11.2 Satz von Green

Satz 11.2.1 Green [Ziltener, 2024]

Seien 𝑈 ⊆ ℝ2 ein beschränktes 𝐶1-Gebiet und 𝑋 ein 𝐶1-Vektorfeld auf 𝑈̄. Dann ist das Integral der
Rotation von 𝑋 über 𝑈 gleich dem Integral von 𝑋 über den Rand von 𝑈, d. h.∫

𝑈

rot 𝑋𝑑𝑥 =

∫
𝜕𝑈,𝑇

𝑋 · 𝑑s =
∫
𝜕𝑈
𝑋 · 𝑇𝑑𝑠.

wobei 𝑇 die positive Orientierung von 𝜕𝑈 ist.

Was sagt dieser Satz aus. Dieser Satz sagt aus, dass wenn ein Vektorfeld eine Rotation hat, so muss man nur
die Rotation am Rend des Vektorfeldes betrachten. Die Rotation am Rand des Vektorfeldes ist die resultierende
Rotation des Vektorfeldes.

11.3 Untermannigfaltigkeit mit Rand und Koorientierung einer Hy-
perfläche

Definition 11.3.1: Parametrisierung, Untermannigfaltigkeit mit Rand
[Ziltener, 2024]

Eine likale innere 𝐶𝑘-Parametrisierung von 𝑀 (der Dimension 𝑑) ist ein Paar (𝑉,𝜓), wobei 𝑉 ⊆ ℝ𝑑 eine

offene Teilmenge 𝑈 von ℝ𝑛 mit 𝜓(𝑉) = 𝑀 ∩𝑈 gibt. Eine lokale 𝐶𝑘-Randparametrisierung von 𝑀 ist ein
Paar (𝑉,𝜓), wobei

𝑉 ⊆ ℝ𝑑
⩾0 := ℝ𝑑−1 × [0,∞).

eine (relativ) offene Teilmenge ist und 𝜓 : 𝑉 → ℝ𝑛 eine 𝐶𝑘-Einbettung ist, sodass es eine offene Teilmenge

𝑈 von ℝ𝑛 mit 𝜓(𝑉) = 𝑀 ∩ 𝑈 gibt. Eine lokale 𝐶𝑘-Parametrisierung von 𝑀 ist eine lokale innere oder

Randparametrisierung vom 𝑀 der Klasse 𝐶𝑘 .

Wir nennen 𝑀 eine 𝐶𝑘-Untermannigfaltigkeit der Dimension 𝐷 mit Rand genau dann, wenn es
für jeden Punkt 𝑥0 ∈ 𝑀 eine lokale 𝐶𝑘-Parametrisierung (𝑉,𝜓) mit 𝑥0 ∈ 𝜓(𝑉) gibt. Sie 𝑀 eine solche
Untermannigfaltigkeit. Wir definieren den intrinsischen Rand von 𝑀 als die Menge

𝜕𝑀 :=
⋃

{𝜓(𝑉 ∩ (ℝ𝑑−1 × {0}))|(𝑉,𝜓) lokale 𝐶𝑘 Randparametrisierung von 𝑀}.

Eine 𝐶𝑘-Untermannigfaltigkeit mit Rand ist eine glatte geometrische Form, bei der jeder Punkt lokal entweder
wie ein offenes Stück des ℝ𝑑 oder wie ein offenes Stück eines ℝ𝑑 mit einem geraden Rand aussieht. Diese loka-
len Ansichten werden durch Parametrisierungen”beschrieben: Innere Parametrisierungen für Punkte fernab des
Randes und Randparametrisierungen für Punkte, die tatsächlich auf dem Rand der Form liegen. Der intrinsi-
sche Rand der Mannigfaltigkeit (𝜕𝑀) ist dann die Menge aller Punkte, die diesen ”geraden Rändern”der lokalen
Randparametrisierungen entsprechen.

Definition 11.3.2: parametrisierte Untermannigfaltigkeit [Ziltener, 2024]

Eine (globale) 𝐶𝑘-Parametrisierung von 𝑀 ist ein Paar (𝑉,𝜓), wobei 𝑉 ⊆ ℝ𝑑 ein beschränktes offenes

𝐶𝑘-Gebiet ist und 𝜓 : 𝑉̄ → ℝ𝑛 eine 𝐶𝑘-Einbettung mit Bild 𝑀 ist. Wir nennen 𝑀 ⊆ ℝ𝑛 eine kompakte

(global) parametrisierte 𝐶𝑘-Untermannigfaltigkeit der Dimension 𝑑 mit Rand genau dann, wenn es eine
globale 𝐶𝑘-Parametrisierung von 𝑀 gibt.

Eine globale 𝐶𝑘-Parametrisierung ist eine einzelne, glatte Abbildung, die ein beschränktes Stück des ℝ𝑑 (mitsamt
seinem Rand) vollständi und lückenlos auf die gesamte Form 𝑀 abbildet. Eine kompakte (global) parametrisierte
𝐶𝑘-Untermannigfaltigkeit mit Rand ist demnach eine Form, die sich als Ganzes durch eine solche einzige Master-
Karte”beschreiben lässt. Dies bedeutet, dass 𝑀 eine topologisch ßolide”, glatte und begrenzte Form ist, die ihren
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Rand vollständig enthält und keine globalen Löcher oder Verwindungen wie eine Kugeloberfläche aufweist.

Definition 11.3.3: Einheitsnormalvektorfeld [Ziltener, 2024]

Eine Koorientierung von 𝑀 (oder ein Einheitsnormalvektorfeld auf 𝑀) ist eine Abbildung 𝜈 ∈ 𝐶(𝑀,ℝ𝑛),
sodass

𝜈(𝑥) ∈ 𝑇𝑥𝑀⊥ , ||𝜈(𝑥)|| = 1, ∀𝑥 ∈ 𝑀.

In einfachen Worten gesagt ist das Einheitsnormalvektorfeld ein Vektorfeld, dessen Vektoren senkrecht zur Ober-
fläche der Menge steht.

Definition 11.3.4: induzierte Orientierung [Ziltener, 2024]

Wir definieren Die durch 𝜈 induzierte Orientierung 𝑇 von 𝜕Σ wie folgt. Seien 𝑥 ∈ 𝜕Σ und (𝑉,𝜓) eine lokale
𝐶1-Randparametrisierung von Σ, deren Bild 𝑥 enthält und die positive Orientierung erfüllt. Wir definieren
𝑦 := 𝜓−1(𝑥) ∈ 𝑉 ⊆ ℝ2

⩾0 und

𝑇(𝑥) := 𝐷1𝜓(𝑦)
||𝑑1𝜓(𝑦)

∈ ℝ3.

Diese Definition beschreibt, wie eine gegebene Orientierung 𝜈 (Einheitsnormalenvektorfeld) einer Mannigfaltigkeit
Σ eine Orientierung für deren Rand 𝜕Σ induziert. An jedem Punkt 𝑥 auf dem Rand wird dabei ein tangentialer
Einheitsvektor 𝑇(𝑥) definiert. Dieser Vektor 𝑇(𝑥) zeigt entlang des Randes in eine konsistente Richtung, die durch
die lokale Randparametrisierung und die Bedingung der positiven Orientierung”(also der Abstimmung mit 𝜈)
festgelegt wird.

11.4 Integral einer Funktion über eine Untermannigfaltigkeit, Zu-
sammenhang mit dem Kurvenintegral

Definition 11.4.1: Gramsche Matrix [Ziltener, 2024]

Sei 𝐴 ∈ ℝ𝑛×𝑑.

Wir definieren die zu 𝐴 gehorige gramsche Matrix als die Matrix 𝐴𝑇𝐴. Wir definieren die zu 𝐴
gehörige gramsche Determinante als det(𝐴𝑇𝐴), die Determinante der gramschen Matrix.

Definition 11.4.2: Integral über kompakte Untermannigfaltigkeit mit Rand
[Ziltener, 2024]

Für jedes 𝑓 ∈ 𝐶(𝑀,ℝ) definieren wir das Riemann-Integral von 𝑓 (über 𝑀) als∫
𝑀

𝑓 𝑑𝐴 := 𝐼( 𝑓 ,𝜓 𝑗 , 𝑆𝑗),

wobei die rechte Seite eine parametrisierbare Untermannigfaltigkeit ist mit einer beliebigen Kollektion
(𝜓 𝑗 , 𝑆𝑗)𝑗 . Wir definieren das 𝑑-dimensionale Volumen von 𝑀 als

Vol𝑑(𝑀) :=
∫
𝑀

1𝑑𝐴.

Diese Definition erklärt, wie man eine Funktion 𝑓 über eine allgemeine, gekrümmte Form oder Oberfläche (𝑀)
integriert, die auch Ränder haben kann. Die Berechnung (𝐼) erfolgt, indem man die gekrümmte Form 𝑀 in kleinere
Abschnitte zerlegt und diese mithilfe von

”
Abwicklungsfunktionen“ (𝜓 𝑗 , 𝑆𝑗) auf flache Bereiche überträgt, wo das

Integral unter Berücksichtigung der Krümmung (𝑑𝐴) ausgeführt wird. Das 𝑑-dimensionale Volumen von 𝑀 ist
dann einfach das Integral der konstanten Funktion 1 über 𝑀.
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11.5 Integral über parametrisierbare Untermannigfaltigkeit, zweidi-
mensionaler Fall, Fluss eines Vektorfeldes durch Hyperfläche

Definition 11.5.1: Fluss durch Hyperfläche [Ziltener, 2024]

Wir definieren den Fluss von 𝑋 durch 𝑀 bezüglich 𝜈 als das Integral∫
𝑀,𝜈

𝑋 · 𝑑𝔸 :=

∫
𝑀

𝑋 · 𝜈𝑑𝐴,

wobei die rechte Seite ein Integral über kompakte Untermannigfaltigkeit mit Rand ist.

Der Fluss quantifiziert die Gesamtmenge einer gerichteten Größe (Vektorfeld 𝑋), die eine gegebene Oberfläche (𝑀)
durchdringt. Er wird berechnet, indem man an jedem Punkt der Oberfläche misst, wie stark das Feld senkrecht
zur Oberfläche steht (mithilfe des Normalenvektors 𝜈), und diese Beiträge über die gesamte Fläche summiert.
Dies ergibt ein Maß dafür, wie viel Materieöder Ëinflusstatsächlich die Oberfläche durchquert, und nicht nur an
ihr entlangströmt.

11.6 Satz von Stokes

Satz 11.6.1 Stokes [Ziltener, 2024]

Seien Σ ⊆ ℝ3 eine kompakte 𝐶2-Fläche, 𝜈 : Σ → ℝ3 eine Koorientierung. 𝑈 ⊆ ℝ3 eine offene Umgebung
von Σ und 𝑋 ∈ 𝐶1(𝑈,ℝ3). Dann gilt, dass∫

Σ,𝜈
(∇ × 𝑋) · 𝑑A =

∫
Σ

(∇ × 𝑋) × 𝜈𝑑𝐴 =

∫
𝜕Σ,𝑇

𝑋 · 𝑑s =
∫
𝜕Σ
𝑋 · 𝑇𝑑𝑠,

wobei 𝑇 die durch 𝜈 induzierte Orientierung von 𝜕Σ ist.

Der Satz von Stokes stellt eine fundamentale Verbindung zwischen einem Oberflächenintegral und einem Li-
nienintegral her. Es besagt, dass die Gesamtmenge an Rotationöder ”Wirbelstärkeëines Vektorfeldes, die eine
gegebene Oberfläche durchdringt, gleich ist. Dieser Wert entspricht exakt der gesamten SZirkulationöder dem
Fluss”desselben Vektorfeldes entlang des Randes dieser Oberfläche.

11.7 Satz von Gauß

Satz 11.7.1 Divergenzsatz von Gauß [Ziltener, 2024]

Seien 𝑈 ⊆ ℝ𝑛 ein beschränktes 𝐶1-Gebiet und 𝑋 ∈ 𝐶1(𝑈,ℝ𝑛). Dann ist das Integral der Divergenz von 𝑋
über 𝑈 gleich dem Fluss von 𝑋 durch den Rand von 𝑈, d. h.∫

𝑈

∇ · 𝑋𝑑𝑥 =

∫
𝜕𝑈,𝜈

𝑋 · 𝑑A =

∫
𝜕𝑈
𝑋 · 𝜈𝑑𝐴,

wobei 𝜈 die nach aussen weisende Koorientierung von 𝜕𝑈 ist.

Der Divergenzsatz von Gauß verbindet das Integral der Divergenz eines Vektorfeldes über ein Gebiet mit dem
Fluss dieses Feldes durch dessen Rand. Er besagt, dass die gesamte Ërzeugungöder Äbsorptionëines Vektorfeldes
innerhalb eines Volumens genau dem Nettofluss des Feldes aus diesem Volumen durch seine Oberfläche entspricht.
Anschaulich bedeutet dies, dass die Summe aller lokalen Quellen und Senken im Inneren eines Bereichs dem
Gesamtfluss durch dessen äussere Begrenzung entsprechen muss.
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