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Kapitel 1

Grundlagen: Logik, Mengen,
Funktionen

1.1 Logik

1.1.1 Grundlagen

In der Logik werden (mathematische) Aussagen untersucht. Eine Aussage ist eine Ausserung, die entweder wahr
oder falsch ist. | ] (wahr oder falsch).
In der mathematischen Logik gelten die folgenden Sétze.

e Satz vom ausgeschlossenen Widerspruch: Eine Aussage ist nicht sowohl war als auch falsch.

e Satz vom ausgeschlossenen Dritten: Jede Aussage ist wahr oder falsch.

[ ]
—+ Bemerkung;:- %

Es gibt gewisse Aussaggp, als logische Aussage gelten konnte aber nicht zuléssig ist. Solche Aussagen sind
meisten riickbeziigliche Ausserungen und sind deswegen keine sinnvollen Aussagen. (Siehe Liigner-Paradox)

Aussagen konnen verneint und miteinander verkniipft werden.

‘ Notation ‘ Bedeutung ‘ Bezeichnung ‘

T wahr
F falsch
-A nicht A Negation
Fiir Verkniipfungen verwenden wir folgende Notationen.
Notation Bedeutung Bezeichnung
ANB A und B Konjunktion
AV B A oder B inklusive Disjunktion
AVB entweder A oder B exklusive Disjunktion
A= B wenn A, dann B Implikation
A © B | genau dann A, wenn B Aquivalenz

Die Wahrheitstabelle der vorher erwiahnten Verkniipfungen ist wie folgt.

|A|B|AAB|AVB | AVB |A=B | AsB |
F F F T T
F|T F T T T F
T|F F T T F F
T|T T T F T T

Aus der Tabelle kann man die Zusammenhénge der Verkniipfungen erkennen.
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—+ Bemerkung:- -}

Wir unterscheiden zwischen dem inklusiven Oder und dem exklusiven Oder. Beim inklusiven Oder kénnen
beide Aussagen wahr sein wihrend beim exklusiven oder nur einer der beiden Aussagen wahr sein kann.

—+ Bemerkung;:- ‘}

Verkniipfende Aussagen brauchen inhaltlich nicht zusammenzuhéngen.

1.1.2 Aquivalenz

Satz 1.1.1 Aquivalenz

Seien P und Q Aussagen. Wenn P und Q die gleichen Aussagen haben, so nennen wir sie logisch Aquivalent.
P=Q (1.1)
Sobald 2 Aussagen dquivalent sind, so ist ihre Implikation, sowie ihr Kontraponiertes logisch dquivalent.

Satz 1.1.2 Kontraponiertes
Das Kontraponierte zur Implikation A = B ist

-B = -A (1.2)
Dabei gilt

A = B =-B = -A.

Die Aquivalenz A & B ist nur wahr, wenn die Implikationen A = B und B = A beide wahr sind.

A& B=(A= B)A(B= A).

1.1.3 Axiome, Sitze und Beweise

In der Mathematik sind Axiome von grosser Bedeutung. Sie sind das Fundament der Mathematik. In der Analysis
werden wir jedoch Sétze verwenden, welche durch Axiome bewiesen worden sind.

Um Aussagen zu Beweisen, verwenden wir in der Logik den Modus Ponens.

Definition 1.1.1: Modus Ponens

Ein Beweis einer Aussage A ist eine sukzessive Herleitung von A aus den Axiomen, in der logische Schlussre-
geln angewendet werden. Eine solche Regel ist der Modus Ponens.

A
A=2B
B
A ist die Pramise, B die Konklusion.

Aus dem Modus Ponens kénnen wir schliessen, dass wenn A und A = B gilt, so gilt B. Der Modus Ponens ist die
Basis eines Beweises. Wir werden spéter sehen, dass wir den Modus Ponens im Hintergrund verwenden.

—+ Bemerkung:- -}

Wir kénnen auch Beweise durchfithren durch die Kontraposition.

In der Analysis werden wir auch mit indirekten Beweisen arbeiten. Dabei nehmen wir an, dass eine Aussage falsch
ist, woraus wir eine falsche Aussage herleiten. Dies nennen wir auch den Beweis mittels Widerspruch. Es lohnt
sich aber oft, einen Widerspruchsbeweis als direkten Beweis umzuschreiben, da aus eine falsche oder einer wahren
Aussage eine beliebige wahre Aussage hergeleitet werden kann.



Satz 1.1.3 Prinzip der vollstindigen Induktion
Nehmen wir an das die Funktion P(0) gilt. Wegen dem Prinzip der vollsténdigen Induktion gilt fiir k € Ny

P(k) = P(k +1).

1.2 Mengenlehre

1.2.1 Grundlagen

Eine Menge ist eine ungeordnete Zusammenfassung von Objekten zu einem Ganzen. Die in einer Menge enthal-
tenen Objekte nennen wir ihre Elemente. [Ziltener, 2024]

Satz 1.2.1 Schreibweise einer Menge

Nehmen wir an, dass xj,Xs,...x; Elemente sind. Dann ist die Menge, bestehend aus den Elementen
X1,X2,...Xn

{x1, %2, .00}

—+ Bemerkung;:- ‘}

Mengen konnen wiederholende Elemente besitzen.

—+ Bemerkung:- -}

Zahlen koénnen bestimmte Zahlenmengen bilden. (N, Z, R)

Definition 1.2.1: Beschreibende Mengenschreibweise

Die beschreibende Mengenschreibweise ist eine Aussageform, welche Elemente x definiert, die in einer
Menge enthalten sein kénnen und eine Bedingung P(x) erfiillen.

{x|P(x)}Fiir die Menge aller x, fiir die P(x) gilt. (1.3)

—+ Bemerkung;:- ‘}

{...} stellen mengen dar, wihrend [] und () meistens Intervalle darstellen. [] sind geschlossene Intervalle. Wenn
man z.B. [1, 5] schreibt, so sind es alle Zahlen zwischen 1 und 5 inklusive der 1 und 5. () sind offene Intervalle.
Schreibt man z.B. (1,5), so sind alle Zahlen zwischen 1 und 5 exklusive 1 und 5 gemeint.

1.2.2 Mengenoperationen und Teilmengenrelation

Wie in Kapitel 1.1 haben Mengen auch Logikoperationen. Sie sind sehr d&hnlich zu den normalenLogikoperationen.
AUB {x|x € AAx € B} = Durchschnitt
ANB {x|x € AV x € B} = Vereinigung
A\B {x € A|x ¢ B} = Differenz

Wenn die Menge A auch in der Menge B liegt, so ist A eine Teilmenge von B.

A CB.

Satz 1.2.2 Das Komplementar einer Menge

Das Komplementir einer Menge definiert eine Menge A, welche die Elemente einer anderen Menge B nicht
beinhaltet.



BC = A\ B.

Satz 1.2.3 De-Morganschen Gesetze

e (AUB) =ACNnBC

e (AnB)t =ACuUBC

Satz 1.2.4 Tupel

Wenn wir eine Liste von Elementen, bestehen aus x1, ..., x;, haben, so nennen wir diese Liste ein Tupel.
Die Anzahl von Elementen n sowie die Anordnung der Elementen spielt eine Rolle.

e Fiir n = 2 nennen wir den Tupel ein Paar.
e Fiir n = 3 nennen wir den Tupel ein Trippel.

e Fiir alle anderen n bezeichnet man die Liste als n-Tupel.

Wie schon vorher erwéihnt spielt die Anordnung eine grosse Rolle. ((x1,x2) # (x2,x1))

Satz 1.2.5 Karthesisches Produkt

Das Produkt zweier Mengen (karthesische Produkt) X und Y kann als eine Menge bestehend aus den
Permutationen den Elementen der beiden Mengen dargestellt werden.

—+ Bemerkung;:- ‘}

Fiir Potenzen gilt das gleiche Prinzip, i.e X% = X x X, X? = (X x X) X X, usw.

Definition 1.2.2: Euklidische Norm

Die euklidische Norm || - || ist die Distanz von einem Punkt, z.B. v zu ihrem Ursprung und wird wie folgt

berechnet.
n

— 2
Vil == )07

i=1

(i) Fiir die euklidische Norm gilt die Dreiecksungleichung ||x + Y|| < ||x|| +[|y|| [ ]




Satz 1.2.6 Offener und abgeschlossener Ball, Sphare

E in Ball oder eine Sphére ist eine Menge von Punkten in einen n-Dimensionalen Raum, welche einen
bestimmten Abstand zum Mittelpunkt des Balles bzw. der Sphére haben.

1. Der offene Ball ist eine Menge von Punkten, deren Abstand zum Mittelpunkt xg kleiner als der Radius
r ist.

Br(xo) := B} (x0) := {x € R"|[|x — xol| <r}.

2. Der abgeschlossene Ball ist eine Menge von Punkten, deren Abstand zum Mittelpunkt xq kleiner oder
gleich dem Radius ist.

B, (x0) := By (xo) := {x € R"|[|x — xol| < r}.

3. Die Sphire ist eine Menge von Punkten, deren Abstand zum Mittelpunkt xy gleich dem Radius ist.

8¢~ (x0) = {x € R"|llx = xol| = r}.

Abbildung 1.1: Von links nach rechts: Offener Ball, abgeschlossener Ball, Sphére

—+ Bemerkung;:- ‘}

Dass die Sphére eine Dimension verliert (n —1) ist auf den ersten Blick verwirrend, macht aber Sinn. Bei einer
Sphére wird nur der Mantel betrachtet. Dadurch wird der Freiheitsgrad verringert was dazu fithrt, dass eine
Dimension verloren geht i.e. der Mantel einer Kugel ist eine Flidche oder der Rand einer Kreisscheibe ist eine
Linie.

10



Satz 1.2.7 Fall y =0 und r = o0
Falls r = 0 gilt fiir den Ball

e Bo(xp) = 0 da die euklidische Norm nicht kleiner als 0 sein kann

e Bo(xo) = {x¢} da der einzige Punkt dessen Abstand zum Mittelpunkt null ist der Mittelpunkt selbst
ist.

Falls r = oo, dann gilt
e Boo(xg) =R"
e Buo(x9) =R"

—+ Bemerkung:- -}

Obwohl R" ein offener und auch ein geschlossener Ball sein kann bedeutet es nicht, dass Be(xo) = Beo(xg) ist.
Das Problem ist, dass kein Rand existiert fiir einen Kreis mit » = co. Deshalb ist R" beides.

1.3 Quantoren

Quantoren sind logische Operatoren, die angeben, wie viele Objekte x eine Bedingung P(x) erfiillen. Die zwei

wichtigsten Quantoren sind die folgenden: [Ziltener, 2024]
‘ Notation ‘ Bedeutung ‘ Beziehung ‘
v fiir jedes- fiir alle” Allquantor
3 és gibt” Existenzquantor
[Ziltener, 2024]

—+ Bemerkung;:- ‘}

Die Reihenfolge der Quantoren spielt eine Rolle. Dies kénnen wir an den vorherigen Beispielen erkennen.

Satz 1.3.1 Verneinung einer quantifizierten Aussageform

Die Verneinung von den Quantoren V und 3 ist wie folgt definiert.

=(Vx e X : P(x)) =3dx € X : =P(x).
—=(dx € X : P(x)) = Vx € X : =P(x).

1.4 Funktionen

Intuitiv ist eine Funktion (oder Abbildung) von X nach Y eine Vorschrift, die jedem Element x € X ein eindeutiges
Element y € Y zuordnet. [Ziltener, 2024]

Definition 1.4.1: Funktion

Eine Funktion (oder Abbildung) ist ein Tripel

f=XY,G),

wobei X und Y Mengen sind und G € X X Y eine Teilmenge, sodass es fiir jedes x € X genau ein y € Y
gibt, sodass (x,y) € G.
[Ziltener, 2024]
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Definition 1.4.2: Definitionsbereich, Zielbereich, Graph, Wert in einem Punkt

Fiir die Funktion f haben wir folgende Definitionen um die Eigenschaften einer Funktion zu definieren.

e dom f := dom(f) := Definitionsbereich von f := X Der Definitionsbereich sind die Werte von x,
welche fiir diese Funktion erlaubt sind.

codom f := codom(f) := Zielbereich von f := Y Der Zielbereich sind die Werte von y, welche fiir
diese Funktion erlaubt sind.

Graph von f :=G

Wert von f an der Stelle x € X := f(x) :=y

f:X =Y :="dom f = Xund codom f =Y”

Definition 1.4.3: Bild

| r

Das Bild einer Funktion f ist eine Menge, welche die méglichen codom(f) beinhaltet (im(f) € codom(f)).

fA) ={f(x)|x € A}.

Was bedeutet das? Wenn wir die Menge A, welches eine Teilmenge von X ist, auf f verwenden, so bekom-
men wir ein Teil, gegebenenfalls alle Elemente von Y.

Definition 1.4.4: Urbild

Das Urbild einer Funktion f ist eine Menge, welche die méglichen dom(f) beinhaltet (f~' € dom(f))

f7Y(B) := {x € X|f(x) € B}.

Was bedeutet das? Wenn wir die Menge B, welches eine Teilmenge von Y ist, auf die Inverse von f (f )
verwenden, so bekommen wir ein Teil, gegebenenfalls alle Elemente von X.

Wir werden nun weitere Eigenschaften von Funktionen kennenlernen: Die Injektivitédt, Surjektivitdt und Bijekti-

<

=.
-+
o
-+

Definition 1.4.5: Injektiv
Eine Funktion ist injektiv wenn

Vx,x' e X: f(x)=f(x') = x=x".

Einfach gesagt bedeutet dies, dass ein Element von X nicht dasselbe Resultat ausgibt, wenn das Element
in die Funktion eingesetzt wird.

Definition 1.4.6: Surjektiv
Eine Funktion ist surjektiv wenn

VyeYaxeX: f(x)=y.

Einfach gesagt bedeutet dies, dass ein Element von Y durch ein Element von X zugeordent ist. Dabei kann
ein Element von X auch mehrere Elemente von Y zugeordnet sein.
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Definition 1.4.7: Bijektiv

Eine Funktion ist bijektiv wenn sie injektiv und surjektiv ist. Mathematisch bedeutet dies

Vx,x’ e X: f(x)=f(x)=>x=x)A(VyeYIxe X: f(x)=y).

—{ Bemerkung;:- }

Funktionen kénnen injektiv und surjektiv (und gegebenenfalls bijektiv) gemacht werden, wenn der Wertebe-
reich gedndert wird.

—+ Bemerkung;:- ‘}

Die Identitét ist eine Funktion, welches sich selber wieder ausgibt.

f(x) = x.

Definition 1.4.8: Umkehrfunktion / Inverse

Die Umkehrfunktion oder Inverse einer Funktion ist eine Funktion, welches das Gegenteil der ur-
spriinglichen Funktion f macht.

OV Yy 5 X, fOY(y) =

In anderen Worten: wenn man ein Element von X in die Funktion einsetzt, so bekommt man ein Element
von Y. Wichtig zu erwdhnen ist, dass eine Inverse nur existiert, wenn die Funktion bijektiv ist.

Definition 1.4.9: Verkniipfung von Funktionen

Die Verkniipfung von Funktion ist wie folgt definiert.

gof:X—>Z,gof(x):=g(f(x)).

Dies bedeutet nichts weiter, dass der codom(f) in die Funktion ¢ eingesetzt wird, und Elemente von Z
dabei herauskommen.

Wichtig zu erwihnen ist, dass die codom(f) = dom(g) ist, weil sonst die Verkniipfung nicht funktionieren
wiirde.
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Kapitel 2

Z.ahlen und Vektoren

Neben Logik bilden Zahlen die Basis fiir die Analysis.

2.1 Die natiirlichen, ganzen und rationalen Zahlen

Definition 2.1.1: Die natiirlichen, ganzen und rationalen Zahlen

Die natiirlichen Zahlen sind definiert als alle positive ganze Zahlen.

N=1{1,23,..}.

Die ganzen Zahlen sind alle ganzen Zahlen.

Z=A{.,-3,-2,-1,0,1,2,3,..}.

Die rationalen Zahlen sind alle Briiche.

]Rz{%hn €Z,neN).

—+ Bemerkung:- -}

1. NC Z C R (Die Menge der ganzen Zahlen beinhaltet die Menge der natiirlichen Zahlen und die Menge
der rationalen Zahlen beinhaltet die Menge der ganzen Zahlen)

2. Ny beschreibt die Menge der natiirlichen Zahlen inklusive 0.

Trotz der unendlichen Moglichkeiten rationale Zahlen zu bilden wird es immer noch 16cher in der Zahlenebene
geben, welche nicht von den rationalen Zahlen gedeckt werden kann. Deshalb fithren wir eine neue Art von Zahl
ein.

2.2 Die reellen Zahlen

Wie im letzten Kapitel besprochen fithren wir eine neue Zahl ein, welche die Locher in der Zahlenebene ”stopfen”
kann. Diese Zahl, auch reelle Zahl genannt, wird auch als Dedekind-Schnitte bezeichnet.
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Definition 2.2.1: Menge der reellen Zahlen, Dedekind-Schnitte |

Eine reelle Zahl (oder Dedekind-Schnitt oder Dedekindscher Schnitt) ist eine Teilmenge x € Q mit den
folgenden Eigenschaften:

(a) x#0

(b) x#Q

(c) ViexVseQ:s>r=sex
(d) Vrexdspex:sop<r

Wir definieren

R := reelle Zahl = Dedekind-Schnitt.

—+ Bemerkung:- -}

Die Definition von Herr Ziltner ist eine alternative Definition. Normalerweise tut man die untere Hilfte defi-
nieren. Da die Rechenoperationen der unteren Hélfte aufwendiger zu definieren ist als die obere, definieren wir
die untere Halfte.

In anderen Worten ist eine reelle Zahl eine Menge von rationalen Zahlen, welche in eine oberen und in einer
unteren Hélfte unterteilt ist. Dies beide Héilften sind eine Teilmenge der rationalen Zahlen. Punkt (a) besagt, dass
die untere Hélfte rationale Zahlen beinhalten muss und nicht die leere Menge sein darf. Zusétzlich darf die untere
Hilfte nicht eine reelle Zahl sein da sonst die untere Hilfte die ganze Zahlenebene wiire. Dies besagt Punkt (b).
Punkt (c) sagt aus, dass eine rationale Zahl s gibt, welche kleiner ist als die Zahl r, welche sich in der unteren
Hilfte befindet. Zusétzlich gilt laut (d), dass es kein grosstes Element sg gibt, welches grosser als r ist.

—+ Bemerkung;:- ‘}

Damit es keine Verwirrung gibt zwischen der reellen Zahl r = V2 und der reellen Zahl als ein Intervall von
einem Dedekind-Schnitt wird diese als r gekennzeichnet. (In der Vorlesung [r])

Formell beschreiben wir der Dedekind-Schnitt
r:=seQ|s<rekR

was nichts anderes Bedeutet als r ist die Menge aller rationalen Zahlen s, wobei s kleiner als r, der Grenzwert
vom Intervall ist.

Da wir die reellen Zahlen als eine Menge definiert haben, kann man die {iblichen Rechenoperationen nicht mehr
wie bei "normalen” Zahlen verwenden.
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Definition 2.2.2: Ordnung, Addition, Multiplikation reeller Zahlen [Ziltener, 2024]

(i) (Ordnung:) Fiir x, y € R definieren wir
xSy x2ydhycCx.
X<Yy:oxSYyAx+y.
(ii) (Addition:) Wir definieren die Addition reeller Zahlen als die Abbildung
+:RxR — R
x+y:=+(x,y):=r+slrex,secy.
(iii) (Subtraktion:) Fiir jedes x € R definieren wir —x als das eindeutige Element von R, sodass

X+ (=x)=0.

(iv) (Multiplikation:) Wir definieren die Multiplikation reeller Zahlen als die Abbildung - : RXR — R
gegeben durch
{rs|lrex,s ey}, fallsx,y=0.

oy = =((=x)-y), falls x <0,y > 0.
/ —(x - (=y)), falls x 2 0,y < 0.
(=x-(=y)), falls x, 1y < 0

Gehen wir die einzelnen Punkte durch. (i) besagt, dass die untere Hilfte x > die andere untere Hilfte y ist, genau
dann wenn x eine Teilmenge von y ist. Zusétzlich gilt, dass x > y ist wenn x < y ist und x # y ist. In einfachen
Worten gesagt bedeutet dies, dass wenn der untere Grenzwert von x kleiner ist als der untere Grenzwert von y,
so ist y entweder in x enthalten da sich die zwei Mengen schneiden oder x und y gleich.

(ii) sagt aus, dass wenn du ein beliebiges Element aus x nimmst und ein beliebiges Element aus y nimmst und
die zusammen addierst, so erhéltst du eine Zahl, welches grosser ist als X +Y, wobei X die reelle Zahl ist, welche
x darstellen soll und Y respektive die reelle Zahl ist, welche y darstellen soll.

(iii) ist hoffentlich klar.

(iv) ist einfach eine komplizierte Art die Multiplikation zu definieren. Grundsitzlich sagt es aus, dass wenn du
ein Element von x nimmst und ein Element von y und die miteinander multiplizierst, so erhéltst du eine neue
Menge welches die resultierende reelle Zahl aus Dedekind-Schmitte darstellt.

Lenma 2.2.1 Bernoullische Ungleichung [ ]

Fiir alle n € Ny und x € [—1, o0) gilt
(1+x)"<1+nx.

In einfachen Worten sagt die Bernoullische Ungleichung, dass exponentielles Wachstum stérker oder gleich stark
ist wie lineares Wachstum. Diese Gleichung wird vor allem fiir Beweise von der Konvergenz von Reihen und Folgen
verwendet. Meistens wird der Beweis mit Induktion durchgefiihrt.

Definition 2.2.3: b-adischer Bruch [Ziltener, 2024]

Sei b < 2. Ein b-adischer Bruch ist Abbildung a : Z — {0, ...,b — 1}, oder das Negative einer solchen
Abbildung, mit den folgenden Eigenschaften:

(a) Es gibt eine Zahl k € Z, sodass fiir jedes i > k gilt a; := a(i) = 0.
(b) Es gibt keine Zahl i € Z, sodass fiir jedes i < [ gilt a; =b — 1.

Wir definieren
R} := {b-adischer Bruch}.
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Der b-adischer Bruch ist einfach gesagt eine Art, um eine reelle Zahl darzustellen. b ist die Basis und zeigt mit
welchen Zahlen die reelle Zahl dargestellt werden kann. (10 = Dezimalsystem) Dabei gilt, dass der b-adischer
Bruch laut (a) nach links alle Elemente eventuell Null sein werden, jedoch laut (b) nach rechts nicht die gleiche
Zahl wiederholen diirfen. Dadurch werden Zahlen eliminiert, welche einfach aufgerundet werden kénnen.

Definition 2.2.4: Ordnung von b-adischer Briichen [Ziltener, 2024]

Wir definieren <; als die strikte lexikographische Ordnung auf Rp. d.h. fiir a,4” € R}, definieren wir
a<pa :—>3IneZNMi>n:a;=a))Aa, <ay.

Wir definieren

a<pa :—ma=a'Va<pa

\. .

Die obige definition sagt einfach aus, dass man die Zahlen einer reellen Zahl ausgedriickt als ein b-adischer Bruch
von links nach rechts vergleicht. Sobald die Zahl a kleiner ist als a’ so ist die Zahl grosser zur Basis b. Dabei ist
einfach wichtig, dass die vorherigen Zahlen gleich sind.

Definition 2.2.5: Betrag [Ziltener, 2024]

Der (Absolut-) Betrag einer Zahl ist die Zahl

x| = X, falls x > 0
" |-x, sonst ’

Hoffentlich ist der Betrag einer Zahl allen bekannt. Diese Definition ist einfach formell und sagt aus, dass wenn
die Zahl x positiv ist so ist deren Betrag die Zahl selbst und sonst ist es —x, da das negative einer negativen Zahl
eine positive Zahl ergibt.

Mit dem Betrag kénnen 2 Sitze eingefithrt werden, welche fiir Beweise sehr niitzlich sind.

Satz 2.2.1 Dreiecks-Ungleichung | ]

Fiir alle x, y € R gilt
lx+yl < x| +1yl.

Satz 2.2.2 Youngsche Ungleichung | ]
Es seien x,y,c € R, sodass ¢ > 0. Dann gilt

)2
2lxy| < cx? + =
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2.3 Supremum und Infimum

Definition 2.3.1: Schranke, Beschrinkheit [Ziltener, 2024]

Sei A Cc R.

e Eine obere Schranke fiir A ist eine Zahl b € R, sodass fiir jedes a € A gilt a < b.

A heisst nach oben beschrinkt genau dann, wenn es eine obere Schranke fiir A gibt.

Die Begriffe untere Schranke und nach unten beschrénkt sind analog definiert.

e A heisst beschrankt genau dann, wenn A nach oben und unten beschrankt ist.

Gehen wir die einzelnen Punkte der Definition durch. Der erste Punkt besagt, dass eine Menge von Zahlen A eine
Zahl hat, welche > der grossten Zahl in der Menge ist. Dies bedeutet, dass die grosste Zahl der Menge diese Zahl
ist oder sie annéhert. Dieser wird ”obere Schranke” genannt. Obwohl es mehrere Zahlen sein kénnen ist es keine
Menge.

Punkt zwei sagt aus, dass eine Menge nach oben beschrankt ist, wenn es eine obere Schranke hat.

Punkt drei definiert die obere Schranke gleich der unteren Schranke. Dies bedeutet, dass eine Menge von Zahlen
A eine Zahl hat, welche < die kleinste Zahl der Menge ist. Dies bedeutet wiederum, dass die kleinste Zahl der
Menge diese Zahl ist oder sie annéhert. Auch hier gilt wieder, dass mehrere Zahlen die obere Schranke sein kénnen,
jedoch die obere Schranke keine Menge ist. Der letzte Punkt definiert eine beschrinkte Menge. Eine beschrinkte
Menge ist einfach eine Menge, welche nach unten und nach oben beschrénkt ist.

Satz 2.3.1 Vollstindigkeit der reellen Zahlen | ]

(i) Jede nicht leere, nach oben beschrinkte Teilmenge A C R besitzt eine kleinste obere Schranke. (Damit
meinen wir ein kleinstes Element der Menge S := {—obere Schranke von A}.)

(ii) Jede nicht leere, nach unten beschrinkte Teilmenge A C besitzt eine grosste untere Schranke.

Wie vorher erwéhnt kann eine Menge A mehrere obere oder untere Schranken haben. Der Satz besagt, dass die
Menge A, falls sie nicht leer ist eine kleinste obere Schranke haben muss (das grosste Element in der Menge A)
und eine grosste untere Schranke. (das kleinste Element der Menge A)

Definition 2.3.2: Supremum, Infimum [Ziltener, 2024]

Sei A € R. Wir definieren das Supremum von A als

kleinste obere Schranke fiir A, falls A # @nach oben beschrinkt ist,
SUpA := 0o, falls A nicht nach oben beschriankt ist,
—c0, falls A = 0.

Wir definieren das Infimum von A als

grosste untere Schranke fiir A,  falls A # 0 und Anach unten beschrénkt ist,
infA := { oo, falls Anicht nach oben beschrinkt ist,
—00, falls A = 0.

Gehen wir nun die einzelnen Definitionen von Supremum und Infimum durch.

Das Supremum ist im allgemeinen Fall die kleinste obere Schranke. Falls A nicht beschrankt ist, so ist das
Supremum oo. Falls A zusétzlich noch die leere Menge ist, so ist das Supremum von A —co.

Beim Infimum ist die grosste untere Schranke der allgemeine Fall. Falls A nicht beschréinkt ist, so ist das Supremum
—oo. Falls A zusétzlich noch die leere Menge ist, so ist das Infimum von A oo.

Grundsétzlich kann man einfach sagen, dass das Supremum und Infimum die Definitionen von Schranken erweitert.
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Definition 2.3.3: Maximum, Minimum einer Teilmenge von R |

Sei A ¢ R. Ein Maximum von A ist ein Element a € A, sodass a > b, fiir jedes b € A. Ein Minimum von
A ist ein Element a € A, sodass a < b, fiir jedes b € A.

Einfach gesagt ist das Maximum bzw. das Minimum einer Menge das grosste, bzw. das kleinste Element von
Menge.

2.4 Komplexe Zahlen

Da wir keine Losung fiir x? = 2 hatten, haben wir die reellen Zahlen eingefiihrt. Dies werden wir in diesem Kapitel
ebenfalls tun, da wir keine Losung fiir x> = —1 haben.

Die Notizen von Herr Ziltner sind nicht sehr niitzlich, weshalb ich dieses Kapitel iiberspringen werde. Ich wiirde
die Notizen von ”Mathematische Methoden (frithere Name Komplexe Analysis)” anschauen.
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Kapitel 3

Folgen und Reihen

Eine Folge ist eine unendlich geordnete Liste von Zahlen. | ] Wenn die Terme einer Folge sich einer

Zahl A annihern, so konvergiert die Folge. Die zu einer Folge (a,)nen, gehorende Reihe ist die Folge der Par-
n

tialsummen (Z Ak)neN,- Dies bedeutet nichts anderes als dass eine Folge genommen wird und eine neue Folge

k=0
erstellt wird, bei der jeder Term die Summe der Terme der urspriinglichen Folge bis zu diesem Punkt ist.

3.1 Folgen und Grenzwerte davon

Definition 3.1.1: Folge [Ziltener, 2024]

Eine komplexe Zahlenfolge (oder kurz Folge) ist eine Funktion
a:Ny:={neNln< N} —>C,

wobei N € Ng. Wir schreiben
ay :=a(n),(a,) := (an)ne]Nn =a.

Wir nennen #n den Folgenindex und a, das n-te Folgenglied.

Diese Definition ist sehr formell. Die Definition sagt nichts anderes aus als das die Reihe eine Funktion ist, welche
die natiirlichen Zahlen von N bis unendlich nimmt und dabei eine komplexe Zahl entsteht. (a; = 2) Des Weiteren
sagt die Definition aus, dass man anstelle von a(n) a, schreiben kann und anstelle von der Funktion, welches (a,,)
als Input nimmt a schreiben kann.

Der Grund weshalb wir eine Folge als eine Funktion definieren ist, weil wir dann bestimmte ”Werkzeuge” ver-
wenden konnen. (dom, codom, etc.)

—+ Bemerkung:- ‘}

Wir definieren neue Folgen, ausser ausdriicklich gesagt, mit dem Startindex 0.
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Definition 3.1.2: Konvergenz, Grenzwert einer Folge in R oder C [Ziltener, 2024]

(i) Sei A € C und (4y)neN, eine komPlexe Zahlenfolge. Wir sagen, dass (4,)neN, gegen A konvergiert
genau dann, wenn gilt

Ve € (0,00)dng € NoVn € No : n > ng = |a, — A| < €.
Wir verwenden dafiir die Notationen
(“n)nE]No — A, a, = A(x - 00)

und sagen auch:
”a, konvergiert gegen A fiir n gegen unendlich.”
Falls (a,)neN, — A, dann nennen wir A den Grenzwert (oder Limes) der Folge (a5, )neN, und schreiben
dafiir
nh_r)rgo ay = lim(an)nen, := A.

(ii) Wir sagen, dass eine Folge konvergiert genau dann, wenn es eine komplexe Zahl gibt, wogegen die
Folge konvergiert. Andernfalls sagen wir, dass die Folge divergiert.

In einfachen Worten gesagt bedeutete dies, dass eine Folge konvergiert, wenn man ein Element 7, in der Folge
finden kann, so das alle Elemente danach innerhalb € sind. Sobald die Folge gegen A konvergiert, so ist auch A
der Grenzwert der Folge. Falls die Folge nicht konvergiert divergiert die Folge.

3.2 Konvergenzkriterien

Wir haben im letzten Kapitel gesehen, dass wir zeigen konnen, dass eine Folge konvergiert, wenn wir ein Element
wihlen und dann zeigen koénnen, dass die darauf folgenden Elemente in einem bestimmten Bereich (€) bleibt.
Dies kann sehr aufwendig sein, da man im Voraus wissen muss, zur welcher Zahl die Folge konvergiert. Anhand
von dieser Information muss man das Element bestimmen, deren darauffolgenden Elemente im e-Bereich bleibt.
Im ersten Augenblick kann es einfach erscheinen. Bedenke aber, dass € beliebig klein gewahlt werden kann.
Zum Gliick gibt es Kriterien, welche dieses Problem vereinfachen.

Definition 3.2.1: Obere und untere Beschrinktheit, monotones Wachstum
[Ziltener, 2024]

Wir nennen (a,)yeN, nach oben (unten) beschriinkt genau dann, wenn die Menge {a,|n € No} nach oben
(unten) beschrinkt ist.

e Wir nennen (a,)neN, monoton wachsend (fallen) genau dann, wenn gilt

apg < a1 < dg < ...({Ilo Z0a; 2 a4y 2 )

Die obige Definition ist ein wenig blod geschrieben, sagt aber nichts anderes aus als dass es eine Folge nach
oben oder unter beschrinkt, sobald es eine Zahl sich annéhert oder die Elemente der Folge gleich der Zahl sind.
Des Weiteren gilt, dass eine Folge monoton wachsend oder fallend ist, wenn die darauffolgenden Elemente eines
beliebigen Elementes der Folge grosser, bzw. kleiner oder gleich sind.

Satz 3.2.1 Monotoniekriterium [ ]

(i) Jede nach oben beschrinkte und monoton wachsende reelle Zahlenfolge (ay)neN, konvergiert gegen
SUDPyeN, @n = sup{a,|n € No}.

(ii) Jede nach unten beschrénkte und monoton fallende reelle Zahlenfolge (a,)neN, konvergiert gegen
infyen, an = inf{a,|n € No}.

Dieser Satz ist die Kernidee zu unserem Problem. Jede Folge, welche monoton wachsend bzw. monoton fallend ist
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und nach oben bzw. nach unten beschriankt ist konvergiert gegen eine Zahl. Diese Zahl ist das Supremum, bzw.
das Infimum der Folge. Dieser Satz ist sehr aussagekriftig, weshalb es fiir viele Beweise verwendet wird.

Satz 3.2.2 Konvergenz erhalten unter Summe, Produkt und Quotient, Ordnung im Limes enthalten

[ ]

Seien A, B € C, (a,)nenN, eine Folge, die gegen A konvergiert, und (by)uen, eine Folge, die gegen B konver-
giert. Dann gilt das Folgende:

(i) (Summe) Die Folge (a, + by )nenN, konvergiert gegen A + B.

(ii) (Produkt) Die Folge (4, - by)neN, konvergiert gegen A - B.
A
(iii) (Quotient) Falls B # 0 und b, # 0, fiir jedes n € Ny, dann konvergiert (Z_n)nelNo gegen —.
n

(iv) (Ordnung im Limes enthalten) Wir nehmen an, dass (4,)nen, und (by)nen, reelle Folgen sind und
dass a, < by, fiir jedes n € Np. Dann gilt A < B.

Dies ist einer der wichtigsten Sdtze in der Analysis und beschreibt die Konvergenz von zwei Folgen, welche
miteinander addiert, multipliziert und dividiert wurde. Einfach gesagt, wenn zwei Folgen miteinander addiert
werden, so werden die Grenzwerte miteinander addiert. Bei der Multiplikation multipliziert und bei der Division
dividiert. Weiterhin ist zu beachten, dass der Grenzwert von einer kleineren Folge nicht unbedingt kleiner sein
muss als der Grenzwert einer grosseren Folge.

—+ Bemerkung;:- -}

Bei der Subtraktion von Folgen konvergiert die neue Folge (4, — by )nen, gegen A — B.

Definition 3.2.2: Eulerische Zahl [Ziltener, 2024]

Wir definieren die Eulersche Zahl als den Grenzwert
. 1., . 1.,
e:= lim ((1+ —=)")pen = lim (1 + =)".
n— oo n n—oo n
Diese Zahl ist nach Leonhard Euler benannt.

—{ Bemerkung;:- }

Die eulerische Zahl e ist nicht periodisch.

3.3 Limes superior und inferiorm Folgen in ]Rd, Cauchy-Kriterium

Bevor wir den Limes Superior und Inferior definieren konnen, miissen wir die erweiterte reelle Zahlengerade
definieren.

Definition 3.3.1: erweiterte reelle Zahlengerade [Ziltener, 2024]

Wir definieren die erweiterte reelle Zahlengerade als die Menge

[-00,00] := RU {—00, c0}.

Wir definieren nichts weiter als, dass die erweiterte reelle Zahlengerade alle Zahlen zwischen —co und oo, was auch
die Vereinigung von den R und die menge von {—o0, 0o} ist.
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Definition 3.3.2: uneigentliche Konvergenz, uneigentlicher Grenzwert

[Ziltener, 2024]
(i) Sei (x4)neN, eine Folge in [—oo0, co]. Wir nennen (X )neN, bestimmt divergent gegen oo genau dann,

wenn
VCeR3aAngeNg:n>ny=x, = C.

In diesem Fall nennen wir co den uneigentlichen Grenzwert von (x,)neN, und schreiben

hm(xn)ne]NU = 00.

(ii) Wir definieren bestimmte Divergenz gegen —oo und den uneigentlichen Grenzwert —oo analog.

Der erste Punkt der vorherigen Definition sagt nichts weiteres aus, als dass eine Folge bestimmt divergent ist,
wenn ein Element der Folge grosser ist als eine beliebige reelle Zahl. Dadurch wissen wir, dass die Folge gegen oo
wéchst und deren uneigentlicher Grenzwert oo ist.

Der zweite Punkt besagt, dass die bestimmte Divergenz gegen —oo, sowie der uneigentliche Grenzwert —co analog
zur bestimmten Divergenz gegen oo bzw. der uneigentliche Grenzwert oo definiert werden kann.

Definition 3.3.3: bestimmte Divergenz gegen —co, uneigentlicher Grenzwert —oco

Sei (x4 )neN, eine Folge in [—oo, co]. Wir nennen (X, )neN, bestimmt divergent gegen —oo genau dann, wenn

VCEIREInOE]NO:n>n0:>xn<C.

Des weiteren bemerkt man, dass in der Definition von Herr Ziltener die uneigentliche Konvergenz nicht explizit
definiert wird. Man kann es sich aber wie folgt vorstellen: die eigentliche Konvergenz ist, wenn eine Folge bestimmt
gegen eine reelle Zahl divergiert. Sobald eine Folge bestimmt gegen oo oder —oo konvergiert, so ist dies eine
uneigentliche Konvergenz.

Definition 3.3.4: Limes superior und inferior [Ziltener, 2024]

(i) Wir definieren den Limes superior von (a,)nen, als

limsup a, := limsup(a,)neN, := lim sup a; € [-oo, 00].
n—oo = jeNg:izn

(if) Wir definieren den Limes inferior von (4,)neN, als

liminf a, := liminf(a,)yen, := lim inf 4; € [—oo, 00].
n—oo n—oo jeNg:izn

\. .

In einfachen Worten gesagt ist der Limes superior der grosste Wert, welche die Folge sich annéhert bzw. unendlich
oft ann#hert, falls die Folge oszilliert. Der Limes inferior ist der kleinste Wert, welche die Folge anndhert bzw.
unendlich oft ann&hert.

Der Limes superior bzw. inferior wird deswegen auch Haufungspunkte genannt.

—+ Bemerkung:- ‘}

liminf a, < limsupay,

Definition 3.3.5: Konvergenzm Grenzwert einer Folge in R? [Ziltener, 2024]

Wir sagenm dass die Folge (a4, )neN, gegen A konvergiert genau dann, wenn
Ve(0,00)dng € NoVn € No : n = ng = ||a, — A|| < e.

In diesem Fall nennen wir A den Grenzwert (oder Limes) der Folge (a,)neN,-

In Kapitel 3.1 haben wir gesehen, dass eine Folge konvergiert sobald ein Teil seiner Elemente sich in einem €
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befinden. Wir haben nun die Definition auf mehrere Dimensionen erweitert. Wenn man ein beliebiges Element ng
einer Folge wihlt und ein € findet, welches der Radius vom Ball um A ist und dieser Ball alle darauffolgenden
Elemente von ny umschliesst, so konvergiert die Folge gegen A. Somit ist A der Grenzwert oder Limes von der
Folge.

Definition 3.3.6: Cauchy-Folge [Ziltener, 2024]

Eine komplexe Zahlenfolge (4, )nenN, heisst Cauchy-Folge genau dann, wenn

Ve € (0,00)3dng € NoVm, n € Ng : m,n = ng = |a, — a,| < €.

Die Cauchy-Folge ist eine Folge, bei der der Abstand der Folgenglieder mit zunehmenden Folgeindex immer kleiner
werden.

3.4 Reihen

Definition 3.4.1: Reihe [Ziltener, 2024]

Fiir jedes n € Ny definieren wir die n-te Partialsumme der Folge (ax)ken, als die Summe

n
Sy 1= Zak =ag+..+a,.
k=0

Wir definieren die zu (ax)x € Ny gehorende Reihe (oder Folge der Partialsummen) als die Folge

(srl)neNo'

Falls diese Folge konvergiert, dann definieren wir

0
agt+ai; +...:= Zak
k=0
= lim(Sp )neN, -
n
= lim ax

n—-oo

k=0

In einfachen Worten gesagt ist eine Reihe eine Folge, bei denen die Elemente die Partialsummen bis zum n-ten
Elemente der urspriinglichen Folge ist. (s = a¢,s1 = ag9+a1, ...) Eine Reihe konvergiert, sobald die Partialsummen
sich einer Zahl anndhern wie bei einer "normalen” Reihe.

Da eine Reihe eine Folge ist, gelten dieselben Konvergenzkriterien von Folgen auch fiir Reihen.

—+ Bemerkung:- ‘}
n

e Falls die Reihe (sn = Z ak) konvergiert, dann konvergiert die Folge (ax)ken, gegen 0. | ]
k=0

Satz 3.4.1 Quotentenkriterium fiir die Konvergenz einer Reihe | ]

Wir nehmen an, dass ax # 0, fiir jedes k € Nj.

n
(i) Die Reihe (Z ak) konvergiert, falls

k=0 nelNg
Ak+1 -
ag

lim sup

k—o0
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n
(ii) Die Reihe ( ak) divergiert, falls
k=0 nelNg

Ak+1
Ak

lim inf > 1.

k— o0

Der Satz sagt besagt, dass wenn, je weiter man in die Reihe fortschreitet (wenn k gegen unendlich geht), das
Verhéltnis des Absolutbetrags des néichsten Elements zum aktuellen Element schliesslich unter 1 bleibt, dann
konvergiert die Reihe. Wenn, je weiter man in die Reihe fortschreitet (wenn k gegen undendlich geht), das
Verhiiltnis des Absolutbetrags des niichsten Elementes zum aktuellen Element schliesslich iiber 1 bleibt, dann
divergiert die Reihe.

—+ Bemerkung;:- ‘}

.. a ..
Falls lim inf k) _ lim inf
k—co ay k—co

Ak+1
ak
dasselbe gilt, wenn die Reihe oszilliert.

= 1 dann ist es unklar ob die Reihe konvergiert oder divergiert. Genau

Definition 3.4.2: Exponentialreihe [Ziltener, 2024]

k

z
Wir definieren die Exponentialreihe zu z als die zur Folge (ak = —) gehorige Reihe, also die als die
keNg

k!
n Zk
Folge (Z F)HEN .
0

k=0

2 3
z
Die obige Definition definiert nichts weiter als e* = 1+ z + 5 + 5 + .... Die néchste Definition macht mehr oder

weniger dasselbe, bloss auf einer sehr formellen Ebene.

Definition 3.4.3: komplexe Exponentialfunktion [Ziltener, 2024]

Wir definieren die (komplexe) Exponentialfunktion als die Funktion

O _k £k

Z
Exp:=exp:C—> C, exp(z):= E T = i
k=0 k=0

Satz 3.4.2 Wurzelkriterium fiir die Konvergenz einer Reihe [

[

n
Z a k) konvergiert, falls
nelNg

(i) Die Reihe (
k=0

lim sup V] ax| < 1.

k—o0

n
(ii) Die Reihe ( ) divergiert, falls
k=1 nelNg

lim sup V| ax| > 1.

k—o0

Das Wurzelkriterium wird verwendet, um oszillierende Reihen, bzw. Reihen deren Quotientenregel 1 ergibt ihre
Konvergenz bzw. Divergenz zu beweisen. Falls ab einem Element der Reihe lim sup \k/lak| < 1 so konvergiert die

k—o0
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Reihe. Ist lim sup ¥/|ax| > 1 so divergiert die Reihe.
k—o0

Definition 3.4.4: Potenzreihe, Konvergenzbereich, -Radius, -Kreisscheibe
[Ziltener, 2024]
(i) Wir definieren die zu (ck)ken, gehorige (komplexe) Potenzreihe als die Abbildung

n

Coz> (chzk) € {Folge in C}.
nelNg

k=0
Wir nennen ci den k-ten Koeffizienten der Potenzreihe.
(ii) (Konvergenzbereich) Wir definieren:

n
Konvergenzbereich der Potenzreihe z — (Z Ckzk)ne]NO

k=0
zur Koeflizientenfolge (ck)ken, gehorigen Konvergenzbereich

n
zeC Z ckzk konvergiert, ¢,
nelNg

k=0
(iii) (Konvergenzradius) Wir definieren:

n

Konvergenzradius der Potenzreihe z — (Z cxzk )

k=0 nelNy
:= zur Koeffizientenfolge ¢ = (cx)ken, gehorigen Konvergenzradius
=p
= Pe

€ [0, 00] := [0, 00) U {0}

1
. lim SUPk—co Vk |Ck|

(iv) (Konvergenzkreisscheibe) Wir definieren:

n
Konvergenzkreisscheibe der Potenzreihe z — (Z cxzk )
n€lNg

k=0
:= zur Koeffizientenfolge (ck)ken, gehorige Konvergenzkreisscheibe

:= B(0)

—+ Bemerkung;:- ‘}

Im Vergleich zu den Notizen von Herr Ziltener habe ich die Definitionen von Konvergenzbereich, Konvergenz-
radius und Konvergenzradius in separate Punkte genommen, um es iibersichtlicher zu machen und damit man
einfacher durch die Punkte gehen kann.

Was ist eine Potenzreihe? Eine Potenzreihe kann man sich vorstellen wie eine unendlich lange Potenzfunktion. c
ist jeweils der Parameter vor der gesuchten variablen z mit der k-ten Potenz. (c2 - 224+c¢y -2+ o)

Der Konvergenzbereich kann man sich wie ein offener Ball vorstellen. Dieser Ball besteht aus komplexen Zahlen,
die, wenn in die Potenzreihe eingesetzt, eine komplexe Zahl wieder ausgibt als Losung. Die eingesetzten komplexe
Zahlen koénnen gleich der Losung sein (Fixpunkt), miissen aber nicht.

Der Konvergenzradius ist der Radius vom offenen Ball, welcher den Konvergenzbereich einschliesst. Dabei haben
wir bestimmte Regeln.

1. Wenn der Konvergenzradius p = 0, so konvergiert die Potenzreihe nur bei z = 0.

2. Wenn der Konvergenzradius p = oo, so konvergiert die Potenzreihe fiir alle z.
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Die Konvergenzkreisscheibe ist der offene Ball, welcher den Konvergenzbereich mit den Konvergenzradius ein-
schliesst aber der Konvergenzbereich muss nicht zwingend komplett eingeschlossen sein. Was ist der Unterschied
zwischen den beiden Terminologien? Der Konvergenzbereich kann Punkte auf der Sphére des offenen Balls haben,
welche die dom der Potenzreihe sind. Da die Sphére komplexe Zahlen enthalten kann, welche nicht dom von der
Potenzreihe sind, wird diese ausgeschlossen.

Satz 3.4.3 Konvergenzbereich einer Potenzreihe, Konvergenzradius | ]

n

(i) Die Reihe (Z ckzk)|neN0 konvergiert fiir jedes z € C, sodass |z| < p.
k=0
n

(ii) Die Reihe (Z ckzk) divergiert fiir jedes z € C, sodass |z| > p.
k=0 nelNg

Dieser Satz sagt nichts Weiteres aus als, dass alle Punkte innerhalb der Konvergenzkreisscheibe mit Konvergenz-
radius p die dom von der Potenzreihe sind, was dazu fiihrt, dass die Potenzreihe konvergiert. Alles ausserhalb der
Konvergenzkreisscheibe lédsst die Potenzreihe divergieren oder oszillieren.

Definition 3.4.5: alternierende Folge, alternierende Reihe [Ziltener, 2024]

Wir nennen die zu (ax)ken, alternierend genau dann, wenn
VkeNg: (-1)fax >0 oder VkeNg: (-1)far<0

Wir nennen die zu (ax)ren, gehorige Reihe alternierend genau dann, wenn (ax)keN, alternierend ist.

Die obige Definition ist eine sehr formelle Art und Weise eine alternierende Folge bzw. Reihe zu beschreiben.
Einfach gesagt ist eine Folge oder Reihe alternierend, wenn alle Elemente mit einem ungeraden Index grosser 0
sind und alle Elemente mit einem geraden Index kleiner 0 sind. Es kann natiirlich auch umgekehrt sein.

Satz 3.4.4 Konvergenzkriterium von Leibniz fiir alternierende Reihen [ ]

Sei (ax)keN, eine monoton fallende Folge in R, die gegen 0 konvergiert. Dann konvergiert die zu ((-=1)*ay) keNo

n
gehorige Reihe, also Folge (sn E= Z(—l)kak) .
k=0 nelNg

Der obere Satz sagt aus, dass wenn man aus den Betrigen von den Elementen einer alternierenden Reihe eine
neue Reihe bildet und dies monoton fallend ist und gegen 0 konvergiert, dann konvergiert die alternierende Reihe.

3.5 Absolute Summierbarkeit einer Folge, absolute Konvergenz einer
Reihe

Definition 3.5.1: absolut summierbar, absolut konvergent [Ziltener, 2024]

Wir nennen (ax)keN, absolut summierbar genau dann, wenn die zu (||ak||)ken, gehorige Reihe, also die

n
Folge ( Z ||ak| |) konvergiert.
k=0 nelNg
n

In diesem Fall nennen wir die zu (ax)ken, gehorige Reihe, also die Folge (Z ||ak||) , absolut konver-
nelNg

k=0
gent.

Die Definition sagt nichts Weiteres aus, als dass wenn man aus der urspriinglichen Folge eine Reihe bildet beste-
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n
hend aus der euklidischen Norm der Elemente der Folge (Z ||ak||) und diese Reihe konvergiert, so ist die
nelNg

k=0
Folge absolut summierbar.
Falls die Folge absolut summierbar ist, dann ist die Reihe, welche aus der Folge gebildet wird absolut konvergent.

Satz 3.5.1 absolute Summierbarkeit und Umordung | ]

Falls die Folge (ax)kenN, absolut summierbar istm dann konvergiert fiir jede bijektive Abbildung ¢ : Ny —
N die zur Folge (a,(j))jeN, gehorige Reihe, und es gilt

Z o) =

j=0 k

ag.

(o]

0

Einfach gesagt sagt der Satz aus, dass wenn man die Elemente einer absolut summierbaren Reihe nimmt und
eine neue Reihe bildet, welche nicht die gleiche Reihenfolge hat, dann ist die Summe der urspriinglichen und der
neuen Reihe gleich. Dies bedeutet auch, dass die neue Reihe konvergiert.

Definition 3.5.2: Faltungm Cauchy-Produkt [Ziltener, 2024]

(i) Wir definieren die Faltung (oder das Faltungsprodukt) von a und b als die Folge

m

axb:Ny—C (a+b)y :=(a+b)(m):= Z akbl:Zakbm_k

k,1eNg:k+I=m k=0

(ii) Wir definieren das Cauchy-Produkt der zu a4 und b gehérigen Reihen als die zur gefalteten Folge a*b
gehorigen Reihe, also

K

Cauchy-Produkt von (Z ak)
k=0 KelNgp

und (ibl) = (i(a*b)m = iﬂkbm—k) .
LeN, MeNg

1=0 m=0 k=0

In einfachen Worten gesagt ist die Faltung eine neue Folge. Jedes Element dieser neuen Folge entsteht, indem
man Produkte von Elementen der beiden urspriinglichen Folgen summiert. Dabei ist die Summe so gebildet, dass
die Indizes der multiplizierten Elemente sich immer zum Index des neuen Elements addieren.

Das Cauchy-Produkt zweier Folgen ist eine Reihe, deren Elemente die Summe der Faltungen der Folgen sind.

Satz 3.5.2 Cauchy-Produkt zweier Reihen [ ]
Seien a = (ag)keN, und b = (b;)ieN, absolut summierbare Folgen in C. Dann sit die Fatung a = b absolut

summierbar, und es gilt
(o] n [se] (o]
St =i Saeta= S0 S
m=0 " m=0 k=0

1=0

Der obige Satz sagt nichts Weiteres aus als, dass falls zwei Folgen absolut summierbar sind, dann ist die Reihe,
welche durch die Faltung der beiden Folgen entsteht absolut summierbar. Des Weiteren gilt, dass die Summe der
Faltung der Folgen genau gleich den Produkten der Reihen ist.

3.6 Die Exponentialfunktion und die trigonometrischen Funktionen
Kosinus und Sinus

In Kapitel 3.2 haben wir die eulerische Zahl e definiert. Mit dieser Zahl kénnen wir die Exponentialfunktion
definieren.
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Definition 3.6.1: Exponentialfunktion

Sei x € Q. Die Exponentialfunktion ist definiert als

* = exp(x).

\.

In diesem Kapitel werden wir die Definition erweitern mit komplexen Potenzen.

Definition 3.6.2: komplexe Potenz von e [ ]

Wir definieren
e” = exp(z).

Mit der komplexen Exponentialfunktion kénnen wir nun einen Zusammenhang zur Kosinus- und Sinusfunktion
bilden.

Definition 3.6.3: Kosinus- und Sinusreihe |

—1)i 72
Wir definieren die Kosinusreihe zu z als die zur Folge (%) gehorige Reihe, also die Folge
: j€Np
(%% )
(2]) mE]NO.
(_1)j22j+1
ir definieren die Sinusreihe zu z als die zur Folge | —F—— gehorige Reihe, also die Folge
Wir defini die Si ih ls di Fol ' horige Reihe, also die Fol
(2j +1)! jeN

( 1)]Z2]+1
(Z (2j + D! )

—+ Bemerkung:- -}

Die Kosinus- und Sinusreihe konvergiert laut dem Quotientenkriterium.

—+ Bemerkung:- ¢

Cos und Sin mit grossen Anfangsbuchstaben sind die Kosinus- bzw. Sinusreihe gemeint.
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Kapitel 4

Stetigkeit, Topologie

4.1 Stetigkeit

Seien n,n’ € N,SCR",S' CR" und f : S — S’ eine Funktion.

Definition 4.1.1: Stetigkeit [Ziltener, 2024]

(i) Sei xg € S. f heisst an der Stelle x( stetig genau dann, wenn

Ve € (0,00)36 € (0,0)Vx € S : ||[x —x0|| < 0 = ||f(x) — f(x0)]] < €.

(ii) f heisst stetig genau dann, wenn an jeder Stelle seines Definitionsbereiches stetig ist.

Gehen wir die einzelnen Punkte der obigen Definition durch. Wir wéhlen ein xg, welches dom(f) ist und einen
weiteres x, welches einen Abstand < 6 zu xo hat. Wenn J(f) von xo und x einen Abstand < € hat, so wissen wir,
dass die Funktion an Punkt x( stetig ist. Falls alle Punkte der Funktion stetig sind, so ist die komplette Funktion
stetig.

—+ Bemerkung:- ‘}

Die Funktion f ist an der Stelle xo unstetig, d.h. nicht stetig genau dann, wenn gilt

Je € (0,00)¥5 € (0,00)3x € S : ||x — x0]| < 5 A|If(x) = F(xo)l| > €.
[ ]

In anderen Worten: Falls die Funktion eine Stelle hat an denen der Wert sprungartig sich dndert, so ist die
Funktion nicht stetig.

Satz 4.1.1 Stetigkeit, Rechenoperationen, Komponenten | ]

(i) Addition, Subtraktion, Multiplikation und Division komplexer Zahlen sind stetige Funktionen.
(ii) Seien n € N,SCR",f,2,: S — C,a € C und x¢ € C, sodass f und g in x¢ stetig sind. Dann sind
die Funktionen | f+g, | a- f,

f-g ‘ in x¢ stetig. Falls g(xo) # 0, dann ist die Funktion g in zg
stetig. (Diese Funktion ist auf der Menge aller x € S definiert, wofiir g(x) # 0.)

(i) Seien n,n’ € N,SC R",S’ C IR”/,f =(fi, .., fwr : S — S’ und xo € S. Die Funktion f ist in x( stetig
genau dann, wenn fiir jedes i € {1,...n"} die Funktion f; in x stetig ist.

Der obige Satz sagt nichts weiteres aus, als dass Rechenoperationen in den komplexen Zahlen stetig sind. Des
Weiteren sind Rechenoperationen von stetigen Funktionen ebenfalls an Punkt x( stetig. Schlussendlich ist eine
Funktion f bestehend aus Vektoren nur dann stetig, wenn jeder Vektor der Funktion f in xo stetig ist.
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Definition 4.1.2: Polynom in mehreren Verénderlichen [Ziltener, 2024]

Eine Funktion f : R" — R heisst Polynom (auf R") genau dann, wenn sie eine (endliche) Linearkombi-
nation von Funktionen der Form

X atay
ist, wobei a1, ..., 4, € Np. (x; bezeichnet die i-te Komponente von x € R".) Der Grad des Polynoms f ist
die grosste Zahl ay +---a,, sodass der Term x]*---x," in f (mit einem nichtverschwindenden Koeffizienten)
auftritt.

Wir definieren nun in einfachen Worten gesagt die Polynomfunktion. Eine Funktion wird als eine Polynomfunktion
bezeichnet, wenn sie als eine Summe von Termen der Form x7'+--x," geschrieben werden kann. x1...x, sind Monome
und sind die Elemente eines Vektors und kénnen aus beliebig vielen Variablen bestehen. (x, xy, zxy, etc.) x; ist
die i-te Komponente des Vektors. a; ist die Potenz und kann eine positive Zahl inklusive 0 sein. Wichtig zu
erwihnen ist noch, dass der Grad der Polynomfunktion die grosste Summe der Potenzen eines Monoms ist.

—+ Bemerkung;:- ‘}

Verkniipfte Funktionen, welche in xq stetig sind, sind verkniipft auch stetig.

—+ Bemerkung:- -}

Die Wurzelfunktion ist stetig.

—+ Bemerkung;:- ‘}

Eine Funktion, welche durch eine Potenzreihe definiert ist, ist stetig.

4.2 Topologie, innerer Punkt, Inneres, Offen- und Abgeschlossenheit
einer Menge, Rand, Konvergenz einer Funktion an einer Stelle

Dieses Kapitel ist sehr dhnlich zum Kapitel 1.2.2. In diesem Kapitel werden wir die Topologie von Mengen
besprechen.

Die Topologie beschreibt im Wesentlichen, ob eine Menge zusammenhéngend ist oder nicht. Wir werden spéter
im Kapitel sehen, was dies bedeutet.

Definition 4.2.1: innerer Punkt, Inneres, Offenheit [Ziltener, 2024]

(i) Ein Punkt x € S heisst innerer Punkt von S genau dann, wenn es ein r € (0, c0) gibt, sodass
Bl(x) C S.

Wir definieren Int S, dass Innere von S (oder den offenen Kern von S), als die Menge aller ihrer
inneren Punkte,
Int S := Int(S) := S—° := {innerer Punkt von S}.

(ii) S heisst offen (in R") genau dann, wenn jeder Punkt von S ein innerer Punkt ist.

—+ Bemerkung:- -}

Das Innere von S ist in S enthalten.

IntS C S.

[ ]

Ein innerer Punkt ist ein Punkt x dessen offener Ball (Ball ohne Rand) mit einem beliebig gew#hlten Radius sich
innerhalb der Menge S befindet. Das Innere einer Menge ist ein verallgemeinerter offener Ball. Die Menge muss
nicht einen Radius haben, sondern kann ein beliebig geformte Menge sein.

In der vorherigen Definition wird auch die offene Menge erwihnt. Die offene Menge besteht nur aus inneren
Punkten, also Punkte, deren offener Ball sich innerhalb der Menge S befindet.
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Definition 4.2.2: Vereinigung, Durchschnitt [Ziltener, 2024]

Sei S eine Kollektion, also eine Menge von Mengen.

(i) Wir definieren U S, die Vereinigung von S (oder Vereinigungsmenge von S oder Vereinigung aller
Elemente von S) als die Menge aller Objekte, die Element (mindestens) eines Elementes von S sind,

d.h.
US:=US:={x|EIS€S:x€S}.

SeS

(ii) Wir nehmen jetzt an, dass S nicht leer ist. Wir definieren ﬂS, den (Durch-)Schnitt von S (oder

Schnittmenge von S oder Schnitt aller Elemente von mathcalS) als die Menge aller Objekte, die
Element aller Elemente von S sind, d.h.

ﬂS:ZﬂS:Z{xWSES:xES}.

SeS

Die Vereinigung einer Kollektion U S kann man verstehen als die Gruppierung von allen Elementen (also Mengen)
der Kollektion zu einer neuen Menge. Beachte dabei, dass Elemente sich nicht wiederholen kénnen.

Der Schnitt einer Kollektion ﬂ S kann man verstehen als die Gruppierung von den Elementen der Mengen der
Kollektion zu einer neuen Menge, bei der die Elemente in allen Mengen der Kollektion vorkommt.

Satz 4.2.1 Eigenschaften offener Mengen [ ]
Es gilt:
(i) 0, R" sind offen in R".
(iI) Der Durchschnitt endlich vieler offener Mengen ist offen.

(iii) Jede Vereinigung offener Mengen ist offen.

Definition 4.2.3: Abgeschlossenheit [Ziltener, 2024]

Eine Teilmenge A C R” heisst abgeschlossen (in R”) genau dann, wenn ihr Komplement A¢ = R”
A offen ist.

Eine Menge ist abgeschlossen, wenn die Menge bestehend aus den Punkten ausserhalb der urspriinglichen Menge
offen ist.

—+ Bemerkung;:- ‘}

Die Eigenschaften abgeschlossener Mengen entspricht auch den Eigenschaften offener Mengen.

Definition 4.2.4: Abschluss [Ziltener, 2024]

Wir definieren den Abschluss von S als den Durchschnitt aller abgeschlossenen Obermengen von S.

S := clos(S) := m A.
ACR" abgeschlossen: SCA

Einfach gesagt ist der Abschluss einer Menge die kleinste Obermenge, welche die Urspiingliche Menge einsch-
liesst. Diese kleinste Obermenge besteht aus der Schnittmenge aller Obermengen, welche die urspiingliche Menge
einschliesst.
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Satz 4.2.2 Charakterisierung des Inneren und des Abschlusses [ ]
Fiir jede Teilmenge S C R" gilt:

(i) Das Innere von S ist die Vereinigung aller offenen Teilmengen von S,

IntS = S° = U u.
UCR" offen UCS

(ii) Der Abschluss von S ist gegeben durch

S = {x € R"|3(xk)ren : Folge in S : xx — x(k — 0)}.

Wir haben gelernt, dass das Innere einer Menge alle Punkte innerhalb von der Menge ausser dem Rand sind.
Diese Definition kénnen wir auf eine Obermenge erweitern. Das Innere einer Obermenge ist die Vereinigung aller
offenen Mengen, welche sich innerhalb der Obermenge befinden.

Der Abschluss kann man sich vorstellen wie der Konvergenzbereich. (Kapitel 3.4) Anstelle das man nur das Innere
des Konvergenzbereiches und ein paar Punkte auf den Rand miteinbezieht, sind auch die Punkte auf den Rand,
welche nicht im Konvergenzbereich sind mitenthalten.

Definition 4.2.5: Rand [Ziltener, 2024]

Wir definieren dS, den (topologischen) Rand von S als das Komplement des Inneren von S im Abschluss
von S, B
dS := S5\ IntS.

In anderen Worten ist der Rand von einer Menge dS nichts weiter als der Abschluss ohne das Innere.

Definition 4.2.6: Konvergenz und Grenzwert einer Funktion [Ziltener, 2024]

Wir sagen, dass die Funktion f an der Stelle x¢ gegen yo konvergiert genau dann, wenn
Ve € (0,00)30 € (0, 0)Vx € X : ||x — x0|| < 0 = || f(x) — yol| < €.
In diesem Fall nennen wir yo den Grenzwert von f an der Stelle xo und wir schreiben

lim f(x):= lkronf = 1o.

X—Xg

.

Die obige Definition wird umgangsprachlich auch das Epsilon-Delta Kriterium genannt. Es besagt, dass wenn wir
eine beliebige (noch so kleine) Toleranzgrenze (€) fiir die Ausgabe f(x) um den potentiellen Grenzwert y, festlegen
(d.h., wir definieren ein Intervall/Ball um yo der Grofie €), dann miissen wir immer in der Lage sein, eine passende
Annidherungsgrenze (0) fiir die Eingabe x um x zu finden (d.h., wir definieren einen Ball um xq der Grofle o),
sodass fiir JEDES x innerhalb dieses 6-Balls (aber ungleich xg, falls x¢ nicht zum Definitionsbereich gehort oder
es um den Grenzwert an sich geht), der Funktionswert f(x) ZWINGEND innerhalb unserer urspriinglichen e-
Toleranz um vy liegt.

Falls dies fiir ein bestimmtes yo gilt dann nennen wir vy den Limes der Funktion f an der Stelle xo.

—+ Bemerkung;:- ‘}

Falls das Epsilon-Delta Kriterium gilt, so ist die Funktion gleichméssig stetig.

Definition 4.2.7: Beschrinktheit [Ziltener, 2024]

Eine Teilmenge von R" heisst beschriinkt genau dann, wenn sie in einem abgeschlossenen Ball enthalten
ist, der nicht ganz R" ist.

In einfachen Worten gesagt ist eine Teilmenge beschrénkt, wenn es ein abgeschlossener ist und nicht unendlich
gross ist.
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Definition 4.2.8: Kompaktheit [Ziltener, 2024]

Eine Teilmenge von R" heisst kompakt genau dann, wenn sie abgeschlossen und beschrinkt ist.

Satz 4.2.3 Bild einer kompakten Menge unter einer stetigen Abbildung [ ]
Das Bild einer kompaketen Menge K € R" unter einer stetigen Abbildung f : K — R ist kompakt

Dieser Satz bedeutet nichts anderes als, dass wenn man eine stetige Funktion und eine kompakte Menge hat,
welche der dom von f ist so ist der codom von f auch eine kompakte Menge.

4.3 Topologisches Kriterium fiir Stetigkeit

Definition 4.3.1: relative Offen- und Abgeschlossenheit [Ziltener, 2024]

(i) Eine Teilmenge U C X heisst relativ offen in X (oder schlichtweg off in X oder relativ offen) genau
dann, wenn es eine offene Teilmenge U von R" gibt, sodass U = U N X.

(ii) Eine Teilmenge A € X heisst relativ abgeschlossen in X genau dann, wenn es eine abgeschlossene
Teilmenge A von R” gibt, sodass A = AN X.

Die obige Definition basiert sozusagen auf die Ansichtsweise. Einfach gesagt kann eine Menge innerhalb einer
Teilmenge nicht offen sein, jedoch innerhalb einer anderen Menge schon. Das Gleiche gilt auch fiir abgeschlossene
Mengen. Der Sinn dahinter ist, dass eine Menge in R” nicht offen/abgeschlossen ist, jedoch in einer Teilmenge
innerhalb R" schon.

Definition 4.3.2: Umgebung [Ziltener, 2024]

Eine Teilmenge U C X heisst Umgebung von x¢ realtiv zu X (oder in X) genau dann, wenn es einen
offenen Ball um xq gibt, dessen Durchschnitt mit X in U enthalten ist, dass heisst es gibt ein r € (0, c0),
sodass

B?(Xo) NnNXcU.

Im Fall X = R” nennen wir ein solches U auch schlichtweg eine Umgebung von xg.

Wenn wir ein Punkt xg wéhlen und ein Ball mit einem Radius r um x( bilden und eine Menge wéhlen U und
diese im Ball um xq sich befindet, so ist U in der Umgebung von xq.

4.4 Zwischenwertsatz und Folgerungen, Stetigkeit der Umkehrfunk-
tion

Satz 4.4.1 Zwischenwertsatz | ]

Seien a,b € R, sodass a < b, f : [a,b] — R stetig, sodass f(a) < f(b), und y € [f(a), f(b)]. Dann gibt es
ein x € [a,b], sodass f(x) = y.

Der Zwischenwertsatz gilt, wenn eine stetige Funktion fiir alle x Werte in einem Intervall als dom ein y Wert als
Im hat. Zusétzlich gilt, dass der Anfangspunkt kleiner als der Endpunkt vom dom als auch vom Im der Funktion
ist.
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Definition 4.4.1: strenge Monotonie [Ziltener, 2024]

(i) Wir nennen f monoton wachsend genau dann, wenn fiir alle x, x” € X gilt, dass
x< ¥ = fx) < f().

(ii) Wir nennen f streng monoton wachsend genau dann, wenn fiir alle x, x” € X gilt, dass

x <x'= f(x) < f(x).

In Kapitel 3.2 haben wir schon das monotone Wachstum definiert. Strenge Monotonie beschreibt eine Funktion,
dessen Folgenglieder strikt grosser sein miissen.

—+ Bemerkung;:- ‘}

Falls f streng monoton wachsend ist, dann ist f injektiv. [ ]

Definition 4.4.2: k-te Wurzelfunktion [Ziltener, 2024]

Fiir jede gerade Zahl k € IN definieren wir die k-te Wurzelfunktion Vk als die Umkehrfunktion der k-ten
Potenzfunktion py : [0, 00) — [0, o), d.h.

= p,:l : [0, 00) — [0, o).

Fiir jede ungerade Zahl k € N definieren wir die k-te Wurzelfunktion {/ als die Umkehrfunktion der k-ten
Potenzfunktion py : R — R, d.h.
= p;l :R—> R.

Sie obige Definition setzt Grenzen fiir die Wurzelfunktion. Da bei k-ten Wurzelfunktionen mit geraden k eine
positive und negative Zahl als Resultat gelten kann, werden nur die positiven Zahlen betrachtet. Bei ungeraden
k sind positive und negative Zahlen erlaubt.

Definition 4.4.3: Logarithmus [Ziltener, 2024]

Wir definieren den (natiirlichen) Logarithmus log als die Umkehrfunktion von exp : R — (0, o0), d.h.

log := Log := exp ™! : (0, 0) — R.

In Kapitel 3.4 haben wir gelernt, was exp() ist. Der natiirlich Logarithmus ist die Umkehrfunktion von exp().
Einfach gesagt gibt der natiirliche Logarithmus die Potenz raus, mit welcher e potenziert werden muss, um diese
Zahl zu kriegen.

—+ Bemerkung:- -}

Fiir alle x, y € (0, o) gilt

log(x, y) = log(x) + log(y).

Satz 4.4.2 Stetigkeit der Umkehrfunktion bei kompakten Definitionsbereich [ ]

Wir nehmen an, dass f bijektiv und stetig ist und dass K kompakt ist. Dann ist die inverse Funktion
f_1 = f<_1> 1Y — K ist stetig.

In sehr einfachen Worten gesagt ist die Inverse einer Funktion in einem kompakten Intervall stetig, sobald die
Funktion selbst stetig und bijektiv ist.

Satz 4.4.3 Bild, strenge Monotonie und Stetigkeit der Umkehrfunktion einer Funktion von einem Intervall nach
R ]
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Sei f : I — R eine stetige Funktion. Dann gilt:
(i) Das Bild von f ist ein Intervall.

(ii) Falls f streng monoton wachsend ist, dann ist die Umkehrfunktion der Funktion f : I — im(f) streng
monoton wachsend und stetig.

Gehen wir die einzelnen Punkte durch. Der erste Punkt ist selbsterklirend. Wenn wir eine stetige Funktion haben,
dessen Urbild ein Intervall ist, dann ist das Bild der stetigen Funktion auch ein Intervall. Der zweite Punkt ist auch
selbsterklarend. Wenn die Funktion monoton wachsend ist, so ist seine Umkehrfunktion auch monoton wachsend.

Satz 4.4.4 Stetigkeit der Umkehrfunktion bei offenem Definitionsbereich [ ]
Seien n,p € N, sodass n > p, U € R" nicht leer und offen und f : U — R stetig und injektiv. Dann gilt:
(i) Es gilt n = p.
(ii) Das Bild im(f) = f(U) ist offen (in R").
(iii) Die Umkehrfunktion der Funktion f : U — im(f) ist stetig.

Eine Funktion in einem n-Dimensionalen Bereich, welche ein Bereich transformiert, hat fiir sein Bild und Urbild
dieselben Dimensionen (i). Des Weiteren gilt, dass das Urbild der Funktion offen ist. (ii) Schlussendlich gilt auch,
dass die Umkehrfunktion der Funktion stetig ist (iii).

4.5 Punktweise und gleichmissige Konvergenz

Definition 4.5.1: punktweise Konvergenz [Ziltener, 2024]

Wir sagen, dass die Folge (fn)menN, punktweise gegen f konvergiert genau dann, wenn

Vx e X : (fm(x))mE]NO - f(X)

Fiir die obige Definition nehmen wir an, dass wir eine Folge haben, dessen Elemente aus Funktionen besteht. Wenn
wir einen Punkt wihlen und diese in die Folge einsetzen (heisst den Punkt in die Funktionen der Folge einsetzen),
so sehen wir, dass die darauffolgende Funktion immer ndher dem Zielwert der Zielfunktion sich annéhert. In
anderen Worten, die Folge konvergiert.

Definition 4.5.2: gleichmiissige Konvergenz [Ziltener, 2024]

Wir sagen, dass die folge (fi)men, gleichméssig gegen f konvergiert genau dann, wenn

sup || fu (x) = f()I| — 0.

memg

Die gleichmaéssige Konvergenz ist sehr &hnlich zur punktweisen Konvergenz. Der Unterschied besteht darin, dass
der Abstand mit jedem Folgenglied zu mehreren Punkten abnimmt und schliesslich gegen 0 geht.
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Kapitel 5

Differentialrechnung auf R

Intuitiv ist die Ableitung einer Funktion f : R — R an einer Stelle xo € R die Steigung der Tangente an den
Graphen von f durch den Punkt xg, f(x¢). Genauer gesagt, ist die Ableitung der Grenzwert der Steigungen der
Sekanten durch (xq, f(xo) und (x, f(x)) fir x gegen x¢. Ableitungen sind allgegenwértig in den Wissenschaften
und im Ingenieurwesen. In der Mechanik ist die Geschwindigkeit eines Teilchens zum Beispiel die Ableitung seines
Ortes als eine Funktion der Zeit. Als ein anderes Beispiel ist in einem elektrischen Schwingkreis die Stromstérke
gleich der Ableitung der Ladung des Kondensators als eine Funktion der Zeit.

5.1 Differential und Differentiationsregeln

Definition 5.1.1: Differenzenquotient, Differenzierbarkeit, Ableitung (in einem
Punkt) [Ziltener, 2024]

(i) Wir definieren den Differenzenquotienten von f zu xq als die Funktion

Q= Qf, : Ulxg) - R, Q) o= LD ZS10)
X —Xg
(ii) Wir nennen f im Punkt x( differenzierbar genau dann, wenn

Q konvergiert im Punkt x.

In diesem Fall definieren wir die Ableitung von f an der Stelle xo als den Grenzwert

f'(xo) :=1imQ = lim Q(x).

(iii) Wir nennen f (auf U) differenzierbar genau dann, wenn f in jedem Punkt differenzierbar ist. In
diesem Fall definieren wir die Ableitung von f als die Funktion

f U —> R,

Gehen wir die einzelnen Punkte der Definition durch. Der Differenzenquotient (i) ist in einfachen Worten gesagt
die Anderungsrate einer Funktion, also die Steigung der Funktion zwischen zwei Punkten. Der zweite Punkt sagt
einfach aus, dass wenn der Differenzenquotient gegen einen Wert (Steigung) konvergiert, so ist eine Funktion in
diesem Punkt differenzierbar und seine Ableitung ist die Steigung selbst. (iii) sagt aus, dass die Ableitung eine
Funktion sein kann, da die Funktion an jedem Punkt abgeleitet werden kann.

Bemerkung;:- ‘}

Wir schreiben f; fiir die i-te Komponente von f. (Es gilt aslo f —(f1,..., fy).) Die Funktion f ist an der Stelle
xo differenzierbar genau dann, wenn fiir jedes i € {1, ..., p} die Funktion f; an der Stelle x( differenzierbar ist.
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In diesem Fall gilt
fi(xo)
fxo)=|
fp’(xo)
[ ]

Wenn eine Funktion als Bild ein Vektor hat und als Urbild ein Skalar, dann ist die Funktion nur differenzierbar,
wenn jede Komponente differenzierbar ist.

Satz 5.1.1 Differenzierbarkeit impliziert Stetigkeit [ ]
Falls f an der Stelle x( differenzierbar ist, dann ist f an der Stelle xq stetig.

Satz 5.1.2 Summen-, Produkt-, Quotientenregel fiir Ableitung [ ]
Wir nehmen an, dass f und g an der Stelle x( differenzierbar sind. Dann sind die Funktionen f + g, f - ¢

und falls g(xg) # 0, auch die Funktion § an der Stelle xg differenzierbar, und es gilt:

(i) (Summenregel) (f + g)'(x0) = f'(x0) + §’(x0)
(i) (Produktregel = Leibnizregel) (fg) (xo) = f'(x0)g(x0) + f(x0)g"(x0)

J_( f'(x0)8(x0) — f(x0)g'(x0)
8 8(xo)?

(iii) (Quotientenregel) ( ) (x0) =

Satz 5.1.3 Kettenregel | ]
Falls f in xq differenzierbar ist und g in f(xo) differenzierbar ist, dann ist g o f in x( differenzierbar mit

Ableitung
(8 © f)(x0) = &'(f (x0))f"(x0)-

5.2 Mittelwertsatz und Folgerungen

Satz 5.2.1 Mittelwertsatz [ ]
Wir nehmen an, dass f stetig und auf dem offenen Intervall [a, b] differenzierbar ist. Dann existiert ein

Xo €la, b[, sodass
£0) = fa)

flxo) = =

Dieser Satz sagt nichts weiteres aus, als dass an einem gewissen Punkt der Funktion die Anderungsrate die
durchschnittliche Anderungsrate der gesamten Funktion ist.

Korollar 5.2.1 verschwindende Ableitung impliziert Konstanz, positive Ableitung strenges Wachstum

[ ]

Sei f stetig und auf dem offenen Intervall [a, b] differenzierbar. Dann gilt folgendes:
(i) Falls f" =0 auf ]a, b[, dann ist f konstant.
(ii) Falls f* > 0 auf Ja, b[, dann ist f monoton wachsend.

(iii) Falls f* > 0 auf ]a, b[, dann ist f streng monoton wachsend.
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—+ Bemerkung:- -}

Fiir das obige Korollar gilt, dass falls f* < 0 auf |a,b[, dann ist f monoton fallend. Falls f* < 0 auf ]a, b|,
dann ist f streng monoton fallend.

Definition 5.2.1: rechts- und linksseitinge Konvergenz [Ziltener, 2024]

(i) Wir nehmen an, dass es ein x4 > xo gibts, sodass (xg,x+) € X. Wir sagen, dass f im Punkt xq
von rechts gegen 1o konvergiert genau dann, wenn die eingeschrankte Funktion f|(y, x,) im Punkt
Xo gegen Yo konvergiert. In diesem Fall schreiben wir

N\ x
fx) = yolx N x0) oder  f(x) —= yo
und definieren den rechtsseitigen Grenzwert von f in xq als

li =1 = 1Yp.
xl\ngof(x) Xllr;(l)f(X) Yo

(ii) Wir nehmen an, dass es ein x_ < xo gibt, sodass (x_,x9) € X. Wir sagen, dass f im Punkt x
von links nach rechts gegen yo konvergiert genau dann, wenn die eingeschrénkte Funktion f|y y, im
Punkt x¢ gegen vy konvergiert. In diesem Fall schreiben wir

£) = yole N %0) | oder | £(x) 2% g

und definieren den links-seitigen Grenzwert von f in xq als

li x):= li x) = 1.
xl\ngof() x%ﬁf() Yo

(iii) Wir sagen, dass f im Punkt x¢ von links (rechts) konvergiert genau dann, wenn es ein yo € R? gibt
wogegen f im Punkt x¢ von links (rechts) konvergiert

Der erste Punkt der Definition sagt aus, dass im Vergleich zum normalen Limes x xo von oben sich annihert
aus dem Grund, weil wir nur ein kleines Intervall auf der rechten Seite von xy betrachten x,. Der zweite Punkt
ist genau umgekehrt. x nédhert sich xy von unten an, da wir nur ein kleines Intervall auf der linken Seite von xg
betrachten. Beide Limes resultieren zu einem Punkt. Falls einer der Limes gilt fiir eine Funktion, so konvergiert
die Funktion von rechts bzw. links zu yq.

—+ Bemerkung;:- -}

Falls F an der Stelle x gegen yo konvergiert und G an der Stelle ¥ gegen z( konvergiert, dann konvergiert
die verkniipfte Funktion G o F an der Stelle xq gegen zg. |

Satz 5.2.2 Umkehrsatz | ]
Wir nehmen an, dass f’ differenzierbar ist und f” # 0. Dann gilt das Folgende:

(i) Das Bild von f ist durch das offene Intervall | gegeben,
im(f) =7.
(ii) Die Funktion f : I — ] ist bijektiv.

(iii) Die Umkehrfunktion f 1= f~t: ] — I ist differenzierbar mit

YW=y = Yy eJ.

1
f W)y

In einfachen Worten besagt der Satz, dass wenn eine Funktion differenzierbar (stetig) und monoton steigend bzw.
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fallend ist, dann kann man eine Umkehrfunktion definieren, welche auch differenzierbar ist und dessen Steigung
der Kehrwert der Steigung der urspriinglichen Funktion ist.

Definition 5.2.2: allgemeine Potenzfunktion [Ziltener, 2024]

Wir definieren die a-te Potenzfunktion als

Pa:(0,00) = R, pa(x) := x7 = e1°8* = exp(alog x).

5.3 Die komplexe Exponentialfunktion, trigonometrische, Arkus-, Hyperbel-
und Areafunktionen

Satz 5.3.1 Cos, Sin [ ]
(i) (?Pythagoras Eigenschaft”) Es gilt
Cos?¢ + Sinp = 1,Vp € R.
(ii) Dei eingeschréinkten Funktionen Sin|r und Cos|r sind differenzierbar mit Ableitungen

| (Sin|r)" = Cos|r | (Cos|r)" = —Sin|Rr |
Proposition 5.3.1 Arkusfunktionen, Ableitungen davon [ ]

(i) (eingeschrénkter Sinus bijektiv) Die Funktion sin : [ - g, g} — [-1,1] ist bijektiv.
(ii) (Arkussinus stetig) Die Umkehrfunktion

arcsin := sin{™ : [-1,1] —» [ — g, g]
stetig.

(iii) (Ableitungen des Arkussinus) Die Einschrinkung arcsin|] — 1, 1[ ist differenzierbar mit Ableitung

arcsin’(y) =

,Vyel-1,1[.

1
Vi-y?
(iv) (eingeschriinkter Kosinus bijektiv) Die Funktion cos : [0, 1] — [-1, 1] ist bijektiv.
(v) (Arkuskosinus ist stetig) Die Umkehrfunktion

arccos := cos\™V : [-1,1] — [0, 7]
ist stetig.

(vi) (Ableitung des Arkuskosinus) Die Einschrénkung arccos |-y | ist differenzierbar mit Ableitung

arccos’(y) = ,VYyel-1,1[.

1
i]

—

(vii) (Ableitung des Tangens) Die Funktion tan : ] - g, [ — R ist differenzierbar mit Ableitung

|

1
tan’ = 1 + tan® = T
cos
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(viii) (eingeschrénkter Tangens bijektiv) Die Funktion tan : ] - E, g[ — R ist bijektiv.

:

(ix) (Arkustangens) Die Umkehrfunktion

T
arctan := taul(_l> ‘R — ] — 5,

|

ist differenzierbar mit Ableitung

arctan’(y) = Vy € R.

1+y2’

Definition 5.3.1: Hyperbelfunktionen [Ziltener, 2024]

Wir definieren den hyperbolischen Kosinus, den hyperbolischen Sinus und den hyperbolischen Tangens als
die Funktionen cosh, sinh, tanh : R — R gegeben durch

eX+e* . eX —e™* sinhx e¥—e™*
coshx ;== ———— sinhx:= ———— tanhx =
2 2 coshx e*+e™™

5.4 Hohere (stetige) Differenzierbarkeit, hohere Ableitungen

Definition 5.4.1: héhere (stetige) Differenzierbarkeit, hthere Ableitungen
[Ziltener, 2024]

(i) Wir nennen f 0-mal differenzierbar (keine Bedingung). Wir definieren ihre 0-te Ableitung (oder
Ableitung 0-ter Ordnung) als
0= f.

Rekursiv definieren wir fiir jedes k € IN: Die Funktion f heisst k-mal differenzierbar genau dann,
wenn sie (k —1)-mal differenzierbar ist und ihre (k —1)-te Ableitung differenzierbar ist. Wir definieren
ihre k-te Ableitung (oder Ableitung k-ter Ordnung) als

f(k) o= (f(k—l))/ - U — R”.
(ii) Sei k € Ny Wir nennen f k-mal stetig differenzierbar (oder von der Klasse C¥ oder schlicht C¥)
genau dann, wenn f k-mal differenzierbar ist und f & stetig ist. Wir definieren die Menge
cku,Rrr) := CKU;RP) := {f : U — RP|fist kmal stetig differenzierbar}

und kiirzen ab:

cku) = cqU, R).

(iii) Wir nennen f beliebig oft differenzierbar (oder C* oder glatt) genau dann, wenn f k-mal differen-
zierbar ist fiir jedes k € INy. Wir definieren die Menge

C®(U,RP) :=C>(U;RP) :={f : U — RP|f ist glatt}.

Der erste Punkt ist selbsterkldrend. Der Punkt sagt aus, dass eine Funktion k Mal abgeleitet werden kann nur
dann, wenn die vorherigen Ableitungen auch existieren. Falls die Ableitung stetig ist, so ist die Funktion stetig
differenzierbar (ii). Falls die Funktion beliebig oft abgeleitet werden kann und jeder dieser Ableitungen stetig ist,
so ist die Funktion glatt.
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Satz 5.4.1 Kriterium fiir stetige Differenzierbarkeit eines Limes | ]

Falls (fin)men gleichmissig gegen f konvergiert und (f,,)men gleichmissig gegen ¢ konvergiert, dann gilt
feCYU,RP)und f'=g.

Falls mehrere Funktionen gegen eine Funktion f konvergiert und die Ableitungen der Funktionen gegen eine
andere Funktion ¢ konvergiert, dann ist f* = ¢ nur dann, wenn die Funktionen und seine Ableitungen gleichmissig
konvergieren.

5.5 Taylorndherung einer Funktion, lokale Extrema

Definition 5.5.1: Taylorpolynom, Restglied, Taylorreihe [Ziltener, 2024]

Sei I ein offenes Intervall, f : I — R, m € No U {-1} und x( € I. Falls m > 0, dann nehmen wir an, dass f
m-mal differenzierbar ist.

(i) Wir definieren das Taylorpolynom von f m-ter Ordnung zum Entwicklungspunkt xo (oder um x)
als die Funktion

f (xo)(

- xo)k

" R-R, T (x):= Z
k=0

(if) Wir definieren das Restglied von f m-ter Ordnung zum Entwicklungspunkt x, als die Funktion
= = Tm : I - R.
(iii) Falls f glatt ist, dann definieren wir die Taylorreihe von f zum Entwicklungspunkt xo (oder um xg)

als die Folge der Taylorpolynome
Tf,X() = (T”’lxo)mE]No-

Der Taylorpolynom wird verwendet, um Funktionen an einem bestimmten Punkt zu beschreiben. Je hoher die
Ordnung ist, desto genauer wird die Funktion beschrieben. Das Restglied ist ein Wert, welches die Genauigkeit
der Approximation beschreibt. Je kleiner der Wert ist, desto genauer ist die Approximation. Schlussendlich kann
der Taylorpolynom eine unendlich grosse Ordnung haben, wenn die Funktion glatt ist.

Satz 5.5.1 gleichméssige Konvergenz der Taylorreihe gegen Limes einer Potenzreihe | ]
Die Taylorreihe von f um xo konvergiert auf dem Intevall By (xo) = [xo — 7, xo + r gleichmiissig gegen f, d.
h.

Ve €]0, co[Tmg € NoVm € NoVx € Bl (xo) : m > my = |Rme(x) = f(x)— Tfme (x)] < e.

Dieser Satz besagt, dass die Taylorreihe einer Funktion f gleichméssig auf einem bestimmten Intervall gegen
f konvergiert. Das bedeutet: Egal welche maximal erlaubte Abweichung (dein € ) du dir fiir die Approximation
wiinschst, der Satz garantiert, dass du eine ausreichend hohe Ordnung ( 1 ) fiir das Taylorpolynom finden kannst.
Ab dieser Ordnung ( mg ) und fiir alle htheren Ordnungen ( m > mg ) wird das Taylorpolynom die Funktion f
fiir jeden einzelnen Punkt in dem betrachteten Intervall innerhalb dieser gewiinschten maximalen Abweichung (
€ ) approximieren.

Satz 5.5.2 Satz von Taylor, Restglied in Lagrangeform [ ]
Wir nehmen an, dass f (m + 1)-mal differenzierbar ist.

(i) Falls xg < x, dann gibt es einen Punkt C €]xg, x[, sodass

fm+1(C)
Rioe ™) = Gy

( Xo)m+1.
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B fm+1(c)

(ii) Falls xo > x, dann gibt es einen Punkt C €]x, x¢[, sodass R}”,x()(x) = m(x — x0)™*1 gilt.

Der obige Satz definiert das Restglied ein wenig genauer durch eine Formel. C ist ein Element im offenen Intervall.
Dieser kann bestimmt werden, indem wir das Supremum von | f (m+1) ()| herausfinden.

Definition 5.5.2: (strikte) lokale Extremalstelle [Ziltener, 2024]

Wir nennen x eine lokale Minimalstelle von f genau dann, wenn es eine Umgebung U von x¢ in X gibt,
sodass

f(x)> f(xo), Vxel {xo}.

Wir nennen x( eine strikte lokale Minimalstelle von f genau dann, wenn es eine Umgebung U von x¢ in
X gibt, sodass

f(x)> f(xo), VxeU {xo}.

Wir nennen xg eine lokale Maximalstelle von f genau dann, wenn es eine Umgebung U von x in X gibt,
sodass

fx) < f(xo), VYxeU {xo}.

Wir nennen x eine strikte lokale Maximalstelle von f genau dann, wenn es eine Umgebung U von x¢ in
X gibt, sodass

f(x) < f(x0), VxelU {xo}.

Wir nennen x¢ eine (strikte) lokale Extremalstelle von f genau dann, wenn xg eine (strikte) lokale Mini-
malstelle oder (strikte) lokale Maximalstelle ist.

. J

FEine Extremalstelle einer Funktion kann eine lokale Minimal- oder Maximalstelle in einem bestimmten Intervall
sein. Bei der Minimal- und Maximalstelle unterschieden wir zwischen strikt und "normal”. Bei der "normalen”
Minimal- bzw. Maximalstelle konnen es mehrere Punkte sein, welche denselben kleinsten bzw. grossten Wert in
diesem Intervall haben. Bei einem strikten Minimal- bzw. Maximalstelle kann es nur einen Punkt haben, welcher
den kleinsten bzw. grossten Wert in diesem Intervall hat.

—+ Bemerkung:- -}

Falls man tiber die ganze Funktion redet, so redet man iiber die globale (strikte) Minimal- bzw. Maximalstelle.

Definition 5.5.3: kritischer Punkt [Ziltener, 2024]

xo heisst kritischer (oder stationédrer) Punkt von f genau dann, wenn die Ableitung von f in x verschwin-

det, d. h.
f(x0) = 0.

Satz 5.5.3 (strikte) lokale Extremalstelle

(i) (Satz von Fermat iiber kritische Punkte) Falls x( eine lokale Extremalstelle von f ist und f in xg
differenzierbar ist, dann ist xo ein kritischer Punkt von f.

(ii) Wir nehmen an, dass xo eine lokale Extremalstelle ist und dass es eine ungerade Zahl m € N gibt,
sodass f m-mal differenzierbar ist und f(’)(xo) =0 Vi=1,...m-1.

Dann gilt f(m)(xo) =0.

(ili) Wir nehmen an, dass es eine gerade Zahl m € IN gibt, sodass f m-mal differenzierbar ist, und
f ) (x0) > 0( f (™ (x¢) > 0). Dann ist xq eine strikte lokale Minimalstelle (Maximalstelle) von f.
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Damit eine Extremalstelle eine Minimal- bzw. Maximalstelle ist, betrachtet man die erste Ableitung der Funktion,
welche nicht 0 ergibt. Falls die Ordnung der Ableitung ungerade ist, so handelt es sich bei dieser Extremalstelle
nicht um eine Minimal- bzw. Maximalstelle. Ist die Ordnung der Ableitung gerade, so handelt es sich um eine
Minimal- bzw. Maximalstelle.
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Kapitel 6

Integration

6.1 Bestimmtes Riemann-Integral: Definition und Beispiele

Definition 6.1.1: Treppenfunktion [Ziltener, 2024]

@ heisst Treppenfunktion genau dann, wenn ¢ eine (endliche) Linearkombination von Indikatorfunktionen
von Intervallen ist.

Das bedeutet, dass es eine Zahl gibt k € INg, Intervalle Iy,..., Iy C I und Zahlen cy,...,cy € R

gibt, sodass
k
P = Z C,’)(I,‘.
i=1

Die Intervalle diirfen offen, abgeschlossen oder halb-offen sein.

Eine Treppenfunktion besteht aus meheren Intervallen, welche einen Wert zugewiesen worden sind. Diese Intervalle
werden kombiniert zu einer Funktion.

Definition 6.1.2: elementares Integral einer Treppenfunktion [Ziltener, 2024]

Wir definieren das elementare Integral von ¢ als die Summe

k
Sip = Si(p) := Zci|1i|/

i=1

wobei k € Ny, Iy, ..., Iy C I Intervalle und c, ..., cx € R Zahlen sind, sodass

k
P = Z CiXI;-
i=1

Die obige Definition sagt nichts Weiteres aus, als dass das elementare Integral die Fliche zwischen der Funktion
und der Abszisse ist. Bei der Treppenfunktion nehmen wir die einzelnen Abschnitte, multiplizieren sie mit der
Hohe und summieren sie auf.
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Definition 6.1.3: eigentliche Riemann-Integrierbarkeit, eigentliches Riemann-

Integral [Ziltener, 2024]

(i) Wir definieren das untere und das obere (Riemann-)Integral von f (iiber I) als

/f = sup{51q0|(P : I — R Treppenfunktion : ¢ < f},
1

/f = 1inf{S1p|yp : I = R Treppenfunktion : ¢ > f}.
I

(ii) Wir nennen f (eigentlich Riemann)integrierbar (iiber I) genau dann, wenn

Z}>If

In diesem Fall definieren wir das (bestimmte eigentliche Riemann-)Integral von f (iiber I) als

lﬁmw:[f:iﬂ

Bevor wir das eigentliche Riemann-Integral anschauen, miissen wir erst das untere und obere Riemann-Integral
anschauen. Das untere bzw. obere Riemann-Integral ist grosste Fliache, welche die Treppenfunktion bildet ohne da-
bei die Funktion zu iiberschreiten bzw. die kleinste Fliche, sodass die Treppenfunktion die Funktion iiberschreitet.
Wenn das untere Riemann-Integral gleich dem oberen Riemann-Integral ist, dann gilt, dass das untere Riemann-
Integral das eigentliche Riemann-Integral ist.

6.2 Eigenschaften der Riemann-Integration

Definition 6.2.1: Integral einer eingeschrinkten Funktion [Ziltener, 2024]

Wir definieren y
[rfrefn
a’ g I

Die obige Definition sieht ein wenig formell aus, sagt aber nichts Weiteres aus als, dass das Integral einer ein-
geschréankten Funktion das Intergral der Funktion iiber dem Intervall ist, iiber dem die Funktion eingeschrankt
ist.

Satz 6.2.1 eigenschaften der riemann-integration [ ]

(i) (treppenfunktion integrierbar) jede treppenfunktion ¢ : i — r ist riemann-integrierbar.

(ii) (stetige und beschrénkte funktion integrierbar) jede stetige und beschrénkte funktion f : 7 — r ist
riemann-integrierbar.

(iii) jede beschréinkte monotone funktion f : i — r ist riemann-integrierbar.

seien jetzt f, g :i — 1 riemann-integrierbar funktionen und c € r.

[refs
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(iv) (monotonie) falls f < g, dann gilt




(v) (linearitét) die funktionen cf und f + g sind riemann-integrierbar und

/icf:c/ii.
[o+o=[1+[s

(vi) (minimum, maximum, absolutbetrag) die funktionen minf, g, maxf, g und |f| sind riemann-

integrierbar. es gilt
‘ / fl< / 1.
1 1

(vii) (gebietsadditivitét) seien a,b,c € 1, sodass a < b < ¢, und f : [a, c] — r. die funktion f ist riemann-
integrierbar genau dann, wenn die eingeschréinkte funktionen f|, ) und f|f ] riemann-integrierbar

sind. in diesem fall gilt
c b c
[r[rfs
a a b

6.3 Hauptsatz der Differential- und Integralrechnung, Stammfunkti-
on

Definition 6.3.1: Integral mit vertauschten Grenzen [Ziltener, 2024]

Seien a,b € R mit a < b und f : [a,b] — R Riemann-integrierbar. Wir definieren das Integral

[
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Definition 6.3.2: rechts- und linksseitige Differenzierbarkeit und Ableitung

[Ziltener, 2024]
(i) Wir nehmen das Folgende an:
X N [xg, oo ist eine Umgebung von xg in [xg, oo[.

Wir definieren den rechtsseitigen Differenzenquotienten von f zu x( als die Abbildung

Q£é+ : XN]xg, 00[— R?, Q£(;+(x) - JM
X — Xo

Wir nennen f an der Stelle x rechtsseitig differenzierbar genau dann, wenn Q£O+ an der Stelle xg
konvergiert. In diesem Fall definieren wir die rechtsseitige Ableitung von f an der Stelle xg als den
Grenzwert

£/ + (x0) = limx — x0Q% (x).

(ii) Linksseitige Differenzierbarkeit und Ableitung: Wir nehmen das Folgende an:
XN] — o0, x0] ist eine Umgebung von xq in | — o0, xg].

Wir definieren den linksseitigen Differenzenquotienten von f zu x als die Abbildung

QL7 XN~ oo, x[~ R, QL (x):= W

Wir nennen f an der Stelle xq linksseitig differenzierbar genau dann, wenn Q{O_ an der Stelle xg
konvergiert. In diesem Fall definieren wir die linksseitige Ableitung von f an der Stelle x( als den
Grenzwert

f’ —(xg) :=limx — xOQit;_(x)'

In einfachen Worten gesagt: Wenn wir einen Punkt auf einer Funktion wéhlen xg und einen weiteren Punkt
wihlen x” welcher grosser ist als xg und diese zwei Punkte mit einer Geraden verbinden, so bildet die Gerade
eine Anniherung zur Tangente im Punkt xo. Wenn x’ sich immer weiter xg annihert, so nihert sich auch die
Tangente dem richtigen Wert an. Dies gilt auch fiir, wenn x” kleiner als xq ist.

Definition 6.3.3: Stammfunktion [Ziltener, 2024]

Eine Stammfunktion fiir f ist eine differenzierbare Funktion F : X — R, sodass F' = f

Satz 6.3.1 Hauptsatz der Differential- und Integralrechnung [ ]

(i) (erster Hauptsatz) Seien ¢ € I und f : I — R eine Riemann-integrierbare Funktion. Wir definieren

F(x):=/cxf.

Sei x € I eine Stetigkeitsstelle von f. Dann ist F an der Stelle x differenzierbar mit Ableitung

F(x) = f(x).

F:I1->R,

(ii) (zweiter Hauptsatz = Formel von Newton und Leibnitz) Sei F : I — R eine differenzierbare Funktion,
deren Ableitung Riemann-integrierbar ist. Dann gilt

b
/ F’ = E(b) - E(a).
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Gehen wir die einzelnen Punkte durch. Punkt (i) definiert eine Funktion f. Wenn wir nun das Integral bilden F
und diese ableiten erhalten wir wieder die Funktion. Punkt (ii) sagt aus, dass wenn wir eine abgeleitete Funktion
integrieren F’ iiber einen Intervall a, b, so ist der Wert des Integrals die Differenz von der Stammfunktion F an
Punkt b und der Stammfunktion an Punkt a.

6.4 Unbestimmte Integration

Definition 6.4.1: unbestimmtes Integral [Ziltener, 2024]

Seien X eine endliche Vereinigung von Intervallen mit positiven Léngen und f : X — R eine Funktion,
die eine Stammfunktion besitzt.
Wir definieren das unbestimmte Integral von f als die Menge der Stammfunktion von f,

/f := {Stammfunktion von f}.

Wir wissen, dass beim Ableiten Konstanten verschwinden. Dies impliziert, dass beim Integrieren die Losung
mehrere Stammfunktionen sein kénnten. Beim unbestimmten Integral sind alle moglichen Losungen in einer
Menge.

6.5 Partielle Integration, Anwendung: Darstellung von g als Wallis-
sches Produkt

Satz 6.5.1 partielle Integration [ ]

Sei X eine endliche Vereinigung von Intervallen mit positiver Lénge und #,v : X — R Funktionen.
Falls u, v differenzierbar sind und #'v eine Stammfunktion besitzt, dann besitzt #v’ eine Stammfunktion

und es gilt
/uv’:uv—/u’v.

Satz 6.5.2 Wallissches Produkt [ ]

4
Die Folge (cy)neN, konvergiert gegen 7 also

A

[\
[N}
S
S

5 T on =

w
w
ot

6.6 Substitutionsregel, Anwendungen: gewdhnliche Differentialglei-
chung erster Ordnung, Separation der Variablen, Partialbruch-
zerlegung, Strategien fiir das Integrieren

Satz 6.6.1 Substitutionsregel | ]
Seien I ein offenes Intervall, F € C*(I), ¢ € C(imF) und xo, x; € I.

Es gilt
X1 F(x1)
/ (§oF)F' = / g.
Xo F(xo)
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6.7 Integration und gleichméissiger Limes, gliedweise Integration ei-
ner Potenzreihe

Proposition 6.7.1 Integral eines gleichméassigen Limes [ ]

Falls die Folge (fm)men, gleichméssig gegen f konvergiert, dann konvergiert die Folge der Integrale

(/fm) gegen das Integral/f.
I meN, I

Korollar 6.7.1 durch Potenzreihe definierte Funktion ist gliedweise integrierbar [ ]
Es gilt

n b
Ck i k+1 _ k-1
;k+1(b ¢ )H‘/uf

Das obige Korollar sagt nichts Weiteres aus, als dass man eine Funktion, die als Potenzreihe (also als unendliche
Summe von Potenzen von x) vorliegt, gliedweise integrieren kann. Das bedeutet, man integriert jeden einzelnen
Term der Reihe separat und summiert diese Ergebnisse dann auf. Im Grenzwert (wenn man unendlich viele Terme
beriicksichtigt) ergibt diese Summe genau das Integral der urspriinglichen Funktion. Es ist eine sehr praktische
Methode, die die Integration von Potenzreihen auf die Integration von einfachen Potenzen reduziert.

fiir n — oo

Satz 6.7.1 Grenzwertsatz von Abel | ]

n

Falls die Reihe (Z cr* ) konvergiert, dann gilt
nelNg

k=0
(o) (o)
k k| e
chx —>ch firx 7r
k=0 k=0

Der Grenzwertsatz von Abel besagt, dass eine Funktion, die durch eine Potenzreihe definiert ist, sich auch am
Rand ihres Konvergenzbereichs ’gut’ verhilt. Wenn die Potenzreihe an einem Randpunkt r selbst konvergiert
(also einen endlichen Wert ergibt), dann strebt die Funktion f(x) stetig genau diesem Wert zu, wenn x sich r von
innen néhert. Dies garantiert eine Art ’Stetigkeit bis zum Rand’, sofern die Reihe dort nicht ’abbricht’.
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6.8 Uneigentliches Riemann-Integral

Definition 6.8.1: Konvergenz und Grenzwert einer Funktion bei +oo
[Ziltener, 2024]

Seien X CR,pe N,YCR?, f: X — Y und yo € R”.

(i) Wir nehmen an, dass X nach oben unbeschrankt ist. Wir sagen, dass f bei co gegen y, Konvergiert
(oder dass f(x) fiir x — oo gegen yo konvergiert) genau dann, wenn

Ve e (0,00)Ax" e RVx € X : x > x" = || f(x) — yol| < €.
In diesem Fall nennen wir y den Grenzwert von f bei oo und schreiben
JH{}Of(x) = hglf = Yo-
(ii) Wir nehmen an, dass X nach unten unbeschrénkt ist. Wir sagen, dass d bei —oo gegen yo konvergiert
(oder dass f(x) fiir x — oo gegen yo konvergiert) genau dann, wenn
Ve € (0,00)Ax" e RVx € X : x < x" = || f(x) — yol| < €.

In diesem Fall nennen wir yo den Grenzwert von f bei —co und schreiben

lim f(x):=lm f := yo.
X——00 —00

In Kapitel 4.2 haben iiber Grenzwerte von Funktionen geredet. In der obigen Definition haben wir die Funktion
auf eine Variable erweitert, welche gegen unendlich geht. Das Konzept ist die gleiche.
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Definition 6.8.2: uneigentliche Riemann-Integrierbarkeit, uneigentliches

Riemann-Integral [Ziltener, 2024]

(i) Seien a_- € R,a4+ € RU {0}, sodass a_ < a4, und f : [a_,a.[— R. Wir nennen f uneigentlich
Riemann-integrierbar genau dann, wenn f eingeschrénkt auf jedes kompakte Teilintervall von [a_, a.[
eigentlich Riemann-integrierbar ist und

X+
/ f tir xy 7 a, konvergiert.
a_

In diesem Fall definieren wir das uneigentliche Integral von f als

a4 Xy
= lim / .
./g f xSy a_ f

(ii) Seien a- € RU{-co},a, € R, sodass a- < a4, und f :]a_,a;] — R. Wir nennen f uneigentlich
Riemann-integrierbar genau dann, wenn f eingeschrénkt auf jedes kompakte Teilintervall von Ja_, a.]
eigentlich Riemann-integrierbar ist und

at
/ f fiir x_ Y\, a- konvergiert.
X—

In diesem Fall definieren wir das uneigentliche Integral von f als

ay ay
= lim .
[ re=tm s

(iii) Seien a_,a, € RU {-o00},a, € R, sodass a- < a, und f :]a_,a,[— R. Wir nennen f uneigentlich
Riemann-integrierbar genau dann, wenn es ein b €]a_, a[ gibt, sodass f|[p,.,[ und f|},_») uneigentlich
Riemann-integrierbar sind. In diesem Fall definieren wir das uneigentliche Integral von f als

1_a+f:=/:f+/ba+f

Wir betrachten nun wie bei den Grenzwerten Integrale, dessen Intervalle ins Unendliche gehen. Falls der Wert des
Integrals gegen einen Wert strebt, so konvergiert dieses Integral und dieser Wert ist die Losung des uneigentlichen
Integrals.

Bei der Berechnung von Integralen kann es bei bestimmten Intervallen zu Problemen fithren, weshalb man auch
die Intervalle aufteilen kann und die Integrale miteinander summieren kann.

wobel b €la_a,|[.
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Kapitel 7

Gewohnliche Differentialgleichungen,

Anwendung auf die Mechanik und die
Elektrotechnik

7.1 Definition einer gewo6hnlichen Differentialgleichung, Anfangswert-
problem, Beispiele, gedampfter Federschwinger, elektrische Schwing-

kreis

Definition 7.1.1: Gewdhnliche Differentialgleichung [Ziltener, 2024]

Sei n € Ny ={0,1,2,...} und I ein offenes Intervall. (I kann beschréinkt oder unbeschrinkt sein.) Wir
bezeichnen die Variable in R mit ¢, verwenden die Notation iz = u’ fiir die Ableitung einer Funktion u
und schreiben u® fiir die k-te Ableitung von u.

Eine gewohnliche Differentialgleichung (GDG) der Ordnung n fiir eine Funktion # : I — R ist eine
Gleichung der Form

| o(t, u(t), i(t)), .., u™(t) =0 | Vtel |

wobei @ : [ X R"*! — R eine konstante Funktion ist, die nicht beziiglich der letzten Variable konstant ist.

Eine GDG ist eine Gleichung bestehend aus einer Linearkombination von einer Funktion und seine Ableitungen.

—+ Bemerkung;:- ‘}

Analog definieren wir den Begriff einer GDG fiir eine Funktion u : I — C, indem wir oben iiberall R durch C
ersetzen. | ]

Definition 7.1.2: Anfangswertproblem

Wir wissen, dass es unendlich viele Ableitungen von einer Funktion gibt, weil die Konstante beliebig
gewihlt werden kann. Damit wir bei GDG Differentialgleichungen nicht dieses Problem haben, kénnen wir
das Anfangswertproblem einfiihren. Das Anfangswertproblem fiihrt Bedingungen fiir die GDG ein, damit
es nicht zu unendlichen vielen Méglichkeiten gibt fiir die Urfunktion.
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7.2 Linearitidt und Homogenitéit einer GDG, Superpositionsprinzip,
Losungsraum einer homogenen linearen GDG, charakteristisches
Polynom einer GDG

Definition 7.2.1: Linearitit und Homogenitéit einer GDG [Ziltener, 2024]

Wir nennen die GDG fiir eine reellwertige Funktion linear genau dann, wenn es Funktionen a;, f : [ —
R(i =0,...,n) gibt, sodass die GDG nach Verschieben von Termen gegeben ist durch

n n

Zaiu(i)zf, d. h. Zai(t)u(i)(t):f(t), Vtel

i=0 i=0

Wir nehmen jetzt an, dass die GDG linear ist. Falls die Funktion f konstant gleich 0 ist, dann heisst die

GDG homogen, sonst inhomogen. Die Funktion f heisst die Inhomogenitat (Quellterm oder Storterm) der
GDG.

GDG konnen die Eigenschaft von Linearitdt und Homogenitéit annehmen. Eine GDG ist linear, wenn
1. die Funktion U(t) und seine Ableitungen keine Potenzen haben,
2. die Funktion U(t) selbst und seine Ableitungen nicht in einer Funktion sind,
3. die Funktion U(t) sowie seine Ableitungen nicht miteinander multipliziert werden.

Falls die GDG linear ist und konstant gleich 0 ist, so ist sie homogen. Ansonsten ist sie inhomogen.

—+ Bemerkung;:- ‘}

Wir definieren Linearitét fiir eine GDG fiir komplexwertige Funktion analog. [ ]

Definition 7.2.2: Superpositionsprinzip

Wenn eine lineare GDG als Losung zwei oder mehrere Funktionen hat, dann kann man diese zwei Funk-
tionen miteinander addieren. Dies ist dann die endgiiltige Losung der GDG.

Definition 7.2.3: charakteristisches Polynom [Ziltener, 2024]

Wir definieren das charakteristische Polynom der GDG als die Funktion

n—1
pA) = A"+ > @Al = A" 4 4, A 4+ g,
i=0

Eine GDG kann in ein charakteristisches Polynom umgewandelt werden, indem man die Funktion U mit A
ersetzt und die Ableitung U durch die dazugehorige Potenz A'. Durch die Umwandlung ist es viel einfacher die
Losungen der GDG zu finden, da Lambda die Eigenwerte der GDG sind. Diese kénnen dann eingesetzt werden.

(u(t) = up(t) = e™)
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7.3 Systeme gewOhnlicher Differentialgleichungen, Anfangswertpro-
bleme

Definition 7.3.1: System gewdthnlicher Differentialgleichungen [Ziltener, 2024]

Ein System von m gewdthnlichen Differentialgleichungen erster Ordnung fiir n Funktionen von I nach R
ist eine Gleichung fiir eine differenzierbare Funktion U : I — R" der Form

Y, U),Ut) =0 Vtel

wobei ¢ : I X R" x R" — R™ eine feste Funktion der Variablen ¢, X, Y ist, die nicht beziiglich Y konstant
ist. Wir nennen ein solches System linear genau dann, wenn es eine Funktion F : [ — R™ gibt, sodass fiir
jedes t € I die Funktion (X,Y) — ¢(t, X,Y) + F(f) linear ist.

Wir nehmen jetzt an, dass das System linear ist. Falls F wie oben konstant gleich 0 gew#hlt wer-
den kann, dann heisst das System homogen, sonst inhomogen. Die Funktion F heisst die Inhomogenitét
(oder Quellterm) der GDG.

Ein System GDG ist eine erweiterte Definition der GDG aus Kapitel 7.1. Anstelle das es nur eine einzige Gleichung
ist, ist ein System GDG mehrere Gleichungen.

—+ Bemerkung:- ‘}

Analog definieren wir den Begriff eines Systems von GDG erster Ordnung fiir # Funktionen von I nach C und
Linearitét eines solchen Systems. | ]
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Kapitel 8

Differentialrechnung im R"

8.1 Partielle Ableitung und Differential

Definition 8.1.1: Differenzierbarkeit und Ableitung einer vektorwertigen Funktion
einer Variable [Ziltener, 2024]

Sei U eine offene Teilmenge von R, p € N,

g1
g=|:[:U—>RF
8p

eine Funktion und yo € U.

Wir nennen ¢ an der Stelle y differenzierbar genau dann, wenn jede Komponente g; im Punkt yg
differenzierbar ist (im Sinn der Analysis I). In diesem Fall definieren wir die Ableitung von g im Punkt
Yo als den Vektor

g1 (o)
8’ (yo) =
g;,(yo)

Wenn wir eine Funktion haben, welcher als Losung einen Vektor hat, dann ist diese nur differenzierbar, wenn jede
Funktion im Vektor selbst differenzierbar ist. Dies sagt die obige Funktion.
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Definition 8.1.2: partielle Differenzierbarkeit [Ziltener, 2024]

Seien nun 71, p € N, U eine offene Teilmenge von R” und f : U — RP eine Funktion. Das bedeutet, dass
f eine vektorwertige Funktion mehrerer Verdnderlicher ist. Wir schreiben x/ fiir die j-te Koordinate eines
Punktes x € R"” und f* fiir die i-te Komponente von f. Das bedeutet, dass

., x™)
flx)= : , VYxel.
FP(xt,..x™)

Sei xg € U und j € {1, ..., n}.

Wir nennen f an der Stelle xo partiell nach der j-ten Variable x/ differenzierbar genau dann,
wenn die Funktion

-1 j+1
§0) 1= Fxby e xh Ly, 2 )
im Punkt y = x{) differenzierbar ist. In diesem Fall defieniren wir die partielle Ableitung von f nach der

j-ten Variable im Punkt x( als die Ableitung von g im Punkt xé. Wir schreiben diese partielle Ableitung
als

0 ]
fri(x0) := Djf(x0) := d;f(x0) := 8—3{}.(9(0) = g’(xé) e R”.

Wir sagen, dass f im Punkt xo partiell differenzierbar ist genau dann, wenn f im Punkt xo nach jeder
Variablen partiell differenzierbar ist. In diesem Fall definieren wir die Jacobi-Matrix von f im Punkt xg

als die Matrix
fhlxo) oo fli(xo)
]f(xo) = (fxl 50 'fx" (x0)) = . .

:1 (X()) e fn (XO)
Wir nennen f partiell differenzierbar genau dann, wenn f in jedem Punkt von U partiell differenzierbar ist.
In diesem Fall definieren wir fiir jedes j € {1, ..., n} die partielle Ableitung von f nach der j-ten Variable

als die Abbildung
foi U > RP.

Eine Funktion f : U € R" — R? (mit n Eingabevariablen und p Ausgabekomponenten) wird an einem Punkt
xo € U partiell nach der j-ten Variable x/ differenzierbar genannt, wenn die Funktion, die entsteht, indem man
alle anderen Variablen ausser x/ auf ihre Werte in xg fixiert, klassisch nach x/ differenzierbar ist. Die resultierende

d
partielle Ableitung 9_fj(xO) ist dann ein Vektor in RP. f ist an x¢ partiell differenzierbar, wenn sie nach jeder ihrer
X

n Variablen partiell differenzierbar ist. In diesem Fall fasst die Jacobi-Matrix J¢(xo) alle partiellen Ableitungen
von f nach den Variablen als p X n-Matrix zusammen, wobei jede Spalte der partiellen Ableitung nach einer
Variablen entspricht. f heisst partiell differenzierbar, wenn sie in jedem Punkt ihres Definitionsbereichs U partiell
differenzierbar ist.

Definition 8.1.3: (totale) Ableitung [Ziltener, 2024]

Wir nennen f and der Stelle xq (total) differenzierbar genau dann, wenn es eine lineare Abbildung A :
R" — R? gibt, sodass

- — Alx —
_ &) = flxo) - Alx —xo)ll

|2 = xol|

g(x):

0 fiir x — xo.

Wir nennen f (total) differenzierbar genau dann, wenn f an der Stelle in U differenzierbar ist.

Wir erinnern uns an die Definition von Kapitel 5.1. Die obige Definition erweitert die eben genannte Definition
auf Vektorebene.
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8.2 Differentiationsregeln, Kettenregel, Richtungsableitung, Gradi-
ent, stetige Differenzierbarkeit

Satz 8.2.1 Kettenregel | ]

Falls f in xq differenzierbar ist und g in f(xo) differenzierbar ist, dann ist g o f in x( differenzierbar mit
Ableitung
d(g o f)(xo) = dg(f(xo)) o (df (x0)) = dg(f (x0))df (x0) : R* — RY.

Korollar 8.2.1 Ableitung von Summe, Produkt, Quotient [ ]

Wir nehmen an, dass f und g in xq differenzierbar sind. Es gilt:
(i) Die Summe f + g ist in xo differenzierbar und d(f + g)(xo) = df (xo) + dg(xo)
p . .
(ii) (Leibnizregel) Das Skalarprodukt f - g = Z f'g' ist in x¢ differenzierbar und
i=1

d(f - §)(x0) = g(xo) - df (x0) + f(x0) - dg(x0),

P
wobei g(xo) - df(x0) := ), &' (xo)df'(xo) msw.

iii) Wenn p = 1 und g(xo) # 0, dann ist der Quotient J—C in xq differenzierbar und
P 8 <

i _ &(xo)df (xo) — f(x0)dg(xo)
d(g)(’“)) - ) ‘

Definition 8.2.1: Richtungsableitung [Ziltener, 2024]

Wir sagen, dass f an der Stelle x¢ in Richtung v differenzierbar ist genau dann, wenn die Funktion
g:R—-RP, g(t):= f(xo+tv),

im Punkt t = 0 differenzierbar ist. In diesem Fall definieren wir die (Richtungs-)Ableitung von f an der
Stelle x¢ in Richtung v als den Vektor

$1(0)

dyf(x0) := Dy f(x0) :=¢'(0):=| : |eR.
8,(0)

Die Richtungsableitung wird verwendet, um die Funktion in eine bestimmte Richtung von einem beliebigen Punkt
Xo zu beschreiben. Die Richtung kann mit dem Richtungsvektor v bestimmt werden.

Definition 8.2.2: Gradient [Ziltener, 2024]

Der Gradient von f an der Stelle von x ist der Vektor

Dy f(x) frr(x)
Vi(x):= = .
Duf(x)) \fan(x)

Der Gradient ist ein Vektor bestehend aus den partiellen Ableitungen der Funktion. Der Gradient zeigt immer in
die Richtung wo die Tangente eines Punktes auf der Funktion die grosste Steigung hat. Die Lange des Gradients
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ist die Steigung selbst.

Definition 8.2.3: stetige partielle Differenzierbarkeit [Ziltener, 2024]

Wir nennen eine Funktion f : U — R stetig partiell differenzierbar (oder schlichtweg stetig differenzierbar
oder von der Klasse C 1) genau dann, wenn f partiell differenzierbar ist und ihre partiellen Ableitungen
stetig sind.

Wir definieren die Menge

C'(U,RP) := CY(U;R?) := {f : U — RP|f ist stetig differenzierbar}.

Im Fall p = 1 schreiben wir einfacher
ciu) = cYu,R).

Die stetige partielle Differenzierbarkeit sagt aus, dass eine Funktion, wenn abgeleitet in jede Richtung stetig ist.
Dies bedeutet, dass es keine abrupte Anderung der Steigung gibt.

—+ Bemerkung;:- -}

Stetige partielle Differenzierbarkeit impliziert totale Differenzierbarkeit. Totale Differenzierbarkeit impliziert
jedoch nicht stetige partielle Differenzierbarkeit.

8.3 Vektorfeld, Potential und Wegintegral

Definition 8.3.1: Vektorfeld, Gradientenfeld [Ziltener, 2024]

Sei U C R" offen.
Ein Vektorfeld auf U ist eine Abbildung
X:U—R".
Sei f € C'(U). Wir definieren das Gradientenfeld von f als
D f(x)
Vf:U—-R", Vf(x):= :
Dy f(x)

Ein Vektorfeld kann man sich als eine Abbildung von Punkten vorstellen, wobei an jedem Punkt ein Vektor
zugeordnet wird. Der dazugehorige Gradientenfeld ist in einfachen Worten gesagt die Ableitung des Vektorfeldes.
Diese zeigt in Richtung mit der steilsten Steigung des Vektorfeldes.

Definition 8.3.2: Potential und Konservativitiit eines Vektorfeldes [Ziltener, 2024]

Sei U € R" eine offene Teilmenge und X : U — R” ein Vektorfeld.

Ein Potential fiir X ist eine differenzierbare Funktion f : U — R, sodass
af =X.

Das Vektorfeld X heisst konservativ genau dann, wenn es ein Potential besitzt.
In sehr einfachen Worten gesagt hat ein Vektorfeld ein Potential falls das Vektorfeld der Gradient der Ursprungs-
funktion ist. Falls ein Vektorfeld ein Potential besitzt, so ist das Vektorfeld konservativ.
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Definition 8.3.3: Wegintegral [Ziltener, 2024]

Wir definieren das Wegintegral von X ldngs y als

/ X dy = / " X0 - plot.

Das Wegintegral berechnet die gesamte kumulative Wirkung eines Vektorfeldes entlang eines definierten Pfades.
Hierbei wird an jedem Punkt des Weges der Anteil des Feldes beriicksichtigt, der in Bewegungsrichtung liegt. Das
Ergebnis des Wegintegrals ist immer eine einzelne Zahl (ein Skalar), die beispielsweise die gesamte verrichtete
Arbeit darstellt.

Definition 8.3.4: Geschlossenheit eines Weges [Ziltener, 2024)]

Sei U € R" eine Teilmenge.

Ein Weg y : [a,b] — U heisst geschlossen genau dann, wenn y(a) = y(b).

Einfach gesagt ist ein Weg geschlossen, falls der Weg am selben Punkt endet, wo er angefangen hat.

Definition 8.3.5: weg-zusammenhingend, konvex [Ziltener, 2024]

Sei S € R".

(i) S heisst weg-zusammenhéngend genau dann, wenn es fiir jedes Paar von Punkten xg, x; € S einen
stetigen Weg v : [0,1] — S von x¢ nach x; gibt, d. h.

y(i)=x;, firi=0,1.
(ii) S heisst konvex genau dann, wenn fiir jedes Paar von Punkten xg, x; € S und jedes t € [0, 1] gilt:

y(t) = (1 —t)xo +tx; €S.

Eine Menge ist weg-zusammenhéngend, wenn man zwei beliebige Punkte wihlen kann und diese mit einem Weg
verbinden kann, welche sich innerhalb der Menge befindet. Falls dieser Weg auch eine gerade ist, so ist die Menge
konvex.

8.4 Charakterisierung der Konservativitit mittels Ableitungen, In-
tegrabilititsbedingung, Rotation eines Vektorfeldes

Definition 8.4.1: einfach zusammenhingend [Ziltener, 2024]

Eine Teilmenge S € R" heisst einfach zusammenhiingend genau dann, wenn S weg-zusammenhéngend ist
und fiir jede stetige Abbildung y : S! — S es eine stetige Ableitung 4 : [0,1] X S gibt, sodass

h(0,y)=y(y),Yy € S*, ' :=h(1,):S' — S ist konstant.

Die Definition beschreibt eine Menge, welche keine Locher beinhaltet. In einfachen Worten gesagt ist laut Defini-
tion eine Menge einfach zusammenhéngend, wenn man den Weg, welcher die Menge umschliesst, auf ein Punkt
verkleinern kann, ohne dabei die Menge selbst zu verlassen. Falls die Menge Locher enthélt, so muss der verklei-
nerte Weg durch das Loch durch.

Satz 8.4.1 Charakterisierung der Konservativitit mittels partieller Ableitungen, Integrabilitdtsbedingung

[ ]
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(i) Falls X konservativ ist, dann erfiillt es die Integrabilitdtsbedingung
DX/ =D;X', Vi,j=1,..n.

(ii) Falls U einfach zusammenhéngend ist und weg-zusammenhéingend und konvex ist, dann ist X kon-
servativ.

(i): Falls das Vektorfeld X konservativ ist, dann muss die partielle Ableitung seiner j-ten Komponente nach der
i-ten Variablen dasselbe Ergebnis liefern wie die partielle Ableitung seiner i-ten Komponente nach der j-ten
Variablen.

(ii): Ist selbsterkldrend.

Definition 8.4.2: Rotation eines Vektorfeldes [Ziltener, 2024]

(i) Fall n = 2 : Sei U € R? offen und X : U — R? ein differenzierbares Vektorfeld. Wir definieren die
(skalare) Rotation (oder Wirbelstirke) von X als die reellwertige Funktion
0X? X!

— 2 1 _ .
rotX.—DlX —DQX —W—WU—HR

(ii) Fall n = 3: Sei U € R? offen und X : U — R? ein differenzierbares Vektorfeld. Wir definieren die
Rotation von X als das Vektorfeld

D200 = D00
rot X :=VxX:=|DsX'-D:X?|: U - R®.
D1 X? - Do X!

8.5 Partielle Ableitungen héherer Ordnung, Taylorpolynom, lokale
Extremalstelle, Hesse-Matrix

Definition 8.5.1: hohere (stetige) partielle Differenzierbarkeit, C* [Ziltener, 2024]

Seien U C R" offen und k € Ny = N U {0}.

Wir nennen jede Funktion f : U — RP 0-mal partiell differenzierbar (keine Bedingung). Ihre (ein-
deutige) partielle Ableitung O-ter Ordnung ist f. Rekurdiv definieren wir fiir k € IN:

Eine Funktion f : U — RP heisst k-mal partiell differenzierbar genau dann, wenn sie (k — 1)-mal
partiell differenzierbar ist und ihre partiellen Ableitungen (k — 1)-ter Ordnung partiell differenzierbar sind.
Die partiellen Ableitungen von f k-ter Ordnung sind die Funktionen D;g, wobei j € {1,...,n} und g alle
partiellen Ableitungen von f (k — 1)-ter Ordnung durchléuft.

Wir nennen f k-mal stetig partiell differenzierbar (oder k-mal stetig differenzierbar oder schlicht
C k) genau dann, wenn f k-mal partiell differenzierbar ist und ihre partiellen Ableitungen k-ter Ordnung
stetig sind. Fiir k € Ny definieren wir die Menge

ckU,RP) := (CKU;RP) :={F: U — RP| fist k-mal stetig partiell differenzierbar}).

Wir nennen f beliebig oft stetig partiell differenzierbar (oder C* oder glatt) genau dann, wenn f Ck ist
fiir jedes k € Ny.

In einfachen Worten gesagt beschreibt diese Definition wie eine Funktion aussieht in Abhéngigkeit mit der Diffe-
renzierbarkeit. Je 6ffter man die Funktion ableiten kann, desto glatter ist die Funktion.
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Satz 8.5.1 Schwarz, Vertauschen partieller Differentiationen | ]
Es gilt
D;D;f = D,D;f.

Definition 8.5.2: Taylorpolynom [Ziltener, 2024]

Wir definieren das Taylorpolynom von f m-ter Ordnung zum Entwicklungspunkt xo als die Funktion

Tfme :IR" — R gegeben durch

m . . k
11,0 =1
Te () = = ——Di, -+ Di, f(x0) [ Jtx - xo;,
k=0 ]':1
n 1 n
= f(xo) + Z Di, f(x0)(x = x0)iy + 5 Z D;,Di, f(xo)(x = x0)i, (x = X0)iy + -+ +
i1=1 i1,ia=1
1 n
— ' Dy, Di, f(xo)x = xo)iy -+ (¥ = Xo)i.-
(R =L

Ein Taylorpolynom ist eine einfachere Polynomfunktion, die eine komplexere Funktion, insbesondere bei mehreren
Variablen, um einen bestimmten Entwicklungspunkt” herum annéhert. Es wird konstruiert, indem der Funktions-
wert und alle ihre partiellen Ableitungen (erste, zweite usw. bis zu einer bestimmten Ordnung) an diesem genauen
Punkt berechnet werden. Jeder Term im Polynom nutzt diese Ableitungswerte, um eine zunehmend genauere,
aber immer noch einfache Anndherung des Verhaltens der urspriinglichen Funktion in der Nihe dieses Punktes
zu bilden.

In Vergleich zur Definition in Kapitel 7?7 bezieht sich diese Definition auf Funktionen mit mehreren Variablen.

—+ Bemerkung:- -}

Die folgende Proposition beschreibt, wie man das Taylorpolynom kompakter beschreiben kann.

Proposition 8.5.1 Taylorpolynom in Multi-Index-Schreibweise | ]
Das Taylorpolynom Tfme ist gegeben durch

T70=) Y, SD'fu)x-x), VreR".

k=0 aeNy:|al=k

Lenma 8.5.1 partielle Ableitungen und Multi-Indizes [ |
Es gilt
n k k
> DD fo)| [o = D) (a) D f(x)0".
i1 =1 j=1 aeNZal=k

Dieses Lemma zeigt, dass die detaillierte Summe iiber alle moglichen Reihenfolgen von k-ten partiellen Ableitungen
(linke Seite) mathematisch identisch ist mit der kompakten Darstellung mittels Multi-Indizes (rechte Seite). Der
entscheidende Multinomialkoeffizient auf der rechten Seite z&hlt dabei genau, wie viele der unterschiedlichen
Reihenfolgen auf der linken Seite zur selben einzigartigen Ableitung fithren. So wird eine iibersichtlichere und
effizientere Schreibweise fiir Ausdriicke mit vielen Ableitungen bewiesen, ohne dass sich der Wert der Summe
andert.

Satz 8.5.2 Taylorformel | ]

63



Es gibt eine Zahl 6 € (0, 1), sodass gilt

fO=T,@+ Y =D e -

laphaeNy:|a|=m+1

Die Taylorformel besagt, dass eine Funktion f(x) sich exakt als ihr Taylorpolynom T]??Xo (x) darstellen ldsst, ergéinzt
um einen prazisen Restterm. Dieser Restterm représentiert die genaue Differenz zwischen der Funktion und ihrer
Polynomanndherung und sieht dhnlich aus wie der ndchste Term der Taylorreihe. Der entscheidende Punkt ist,
dass die Ableitungen im Restterm an einer unbekannten Zwischenstelle xg (die zwischen dem Entwicklungspunkt
Xo und x liegt) ausgewertet werden, was die genaue Fehlerabschitzung ermoglicht.

Definition 8.5.3: Restglied [Ziltener, 2024]

Wir definieren das Restglied von f m-ter Ordnung zum Entwicklungspunkt x¢ als die Funktion

R?,x(] = jf —Tf"fxO :U —> R.

Diese Definition entspricht der Definition aus Kapitel ?? mit dem Unterschied, dass es fiir Funktionen mit meh-
reren Variablen gilt.

Definition 8.5.4: strikte lokale Extremalstelle [Ziltener, 2024]

Wir nennen x¢ eine lokale Minimalstelle von f genau dann, wenn es eine Umgebung V von xg in U gibt,
sodass

fx)> f(xo0), Vxe€V {xo}.
Wir nennen xq eine strikte lokale Minimalstelle von f genau dann, wenn es eine Umgebung V von x¢ in
U gibt, sodass

f(x)> f(x0), Vx €V {xo}.

Wir nennen xg eine lokale Maximalstelle von f genau dann, wenn es eine Umgebung V von x¢ in U gibt,
sodass

f(x) < f(xo), VxeV {xo}.
Wir nennen xq eine strikte lokale Minimalstelle von f genau dann, wenn es eine Umgebung V von x¢ in
U gibt, sodass

f(x) < f(xo), VxeV {xo}.

Wir nennen x eine (strikte) lokale Extremalstelle von f genau dann, wenn xg eine (strikte) lokale Mini-
malstelle oder (strikte) lokale Maximalstelle ist.

Wie die vorherige Definition entspricht diese Definition der Definition aus Kapitel 7?7 mit dem Unterschied, dass
es fiir Funktionen mit mehreren Variablen gilt.

Definition 8.5.5: kritischer Punkt [Ziltener, 2024]

xo heisst kritischer (oder stationérer) Punkt von f genau dann, wenn die Ableitung von f in x verschwin-
det, d. h.

df(xo) = 0.

Definition 8.5.6: Hesse-Matrix [Ziltener, 2024]

Wir definieren die Hesse-Matrix von f im Punkt xg als die quadratische Matrix

Hessf(xo) := (DiDjf(xO))lr'l,j:y

Die Hesse-Matrix ist das multivariate Aquivalent der zweiten Ableitung und beschreibt die ” Kriimmungéiner
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Funktion mit mehreren Variablen an einem bestimmten Punkt. Sie ist eine quadratische Matrix, deren Eintrige
alle moglichen zweiten partiellen Ableitungen der Funktion sind, ausgewertet am Entwicklungspunkt. Diese Matrix
ist entscheidend, um die Art von lokalen Extrempunkten (Minimum, Maximum oder Sattelpunkt) zu bestimmen.
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Kapitel 9

Umkehrsatz, Satz iiber implizite
Funktionen, Untermannigfaltigkeit des
Koordinatenraums, Tangentialraum

9.1 Ck-Diffeomorphismus, Umkehrsatz

Definition 9.1.1: C¥-Diffeomorphismus [Ziltener, 2024]

Eine Abbildung f : U — V heisst C k_Diffeomorphismus genau dann, wenn sie bijektiv und C* ist und ihre
Umkehrung CF ist. Wir nennen einen C*-Diffeomorphismus einen glatten Diffeomorphismus oder einfach
einen Diffeomorphismus.

In einfachen Worten gesagt ist ein Ck-Dineomorphismus eine Funktion, welche bijektiv ist. Des Weiteren gilt,
dass die Funktion selber und seine Inverse zu einem gewissen Grad k differenzierbar ist.

Satz 9.1.1 Umkehrsatz [ ]

Seien Uy € R" offen, k € NU {oo}, f € CX(Uy, R") und x¢ € Uy ein Punkt, sodass D f(xo) invertierbar ist.
Dann gibt es eine offene Umgebung U € Uy von xg, sodass f(U) offen ist und die Einschrénkung

f:u—-fU)

ein Ck—DiFfeomorphismus ist.

Der Umkehrsatz besagt, dass wenn eine CK_Funktion f : Uy — R" an einem Punkt x eine invertierbare Ab-
leitung D f(xo) besitzt, dann ist f in einer kleinen Umgebung von xg lokal umkehrbar. Die existierende lokale
Umkehrfunktion ist ebenfalls C k—glatt. Folglich ist die Funktion f in dieser Umgebung ein Ck—Diffeomorphismus.

9.2 Der Satz iiber implizite Funktionen

Satz 9.2.1 implizite Funktionen [ ]

Wir nehmen an, dass
f(xo,y0) = 0, Dy f(x0, yo) invertierbar ist.

Die folgenden Aussagen gelten:

e Es gibt offene Umgebungen U von xy und V von yq ind eine Abbildung
gectu,v),
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sodass
UxVCW,

fHO)N MU x V) = gr(g) = {(x, g(x)x € U},
D, f(x, g(x)) invertierbar ist, Vx € U.
(gr(g) = Graph von g)
(if) Seien U,V und g wie in (i) und x € U. Dann gilt

Dg(x) = —(Dyf(x, §(x))) "' Dx f(x, g(x)).

Das Implizite Funktionentheorem besagt, dass wenn eine Funktion f(x,y) = 0 an einem Punkt (xo, yo) erfiillt
ist und die partielle Ableitung Dy f(xo, yo) dort invertierbar ist, Dann existiert lokal um (xo, yo) eine eindeutige,
glatte Funktion g, die y als Funktion von x definiert, sodass f(x, g(x)) = 0 gilt. Des Weiteren liefert das Theorem
eine Formel, um die Ableitung von g(x) mithilfe der partiellen Ableitungen von f zu berechnen.

9.3 Untermannigfaltigkeiten des Koordinatenraums

Definition 9.3.1: Untermannigfaltigkeiten des Koordinatenraums [Ziltener, 2024]

Seien n € No = NU {0}, M C R" eine Teilmenge, k € N U {co} und d € {0, ..., n}.

Sei xo € M. Wir sagen, dass M um xg eine d-dimensionale Ck—Untermannigfaltigkeit des R" ist
genau dann, wenn es eine offene Umgebung U € R" von xg, eine Permutation o von {1, ..., n}, eine offene
Teilmenge V € R? und eine Funktion fe CK(V,R" gibt, sodass

{70, ., xM)x e MUUY = gx(f) = {(y, fFW)ly € V}.

Wir nennen M eine d-dimensionale C k—Untermannigfaltigkeit des R" genau dann, wenn M diese Bedingung
fiir jedes xo € M erfiillt. In Fall k = co nennen wir eine solche Teilmenge M eine glatte (d-dimensionale)
Untermannigfaltigkeit des R”.

In einfachen Worten gesagt ist eine Untermannigfaltigkeit eine Menge, welche zu einem gewissen Grad k differen-
zierbar ist und eine kleinere Dimension hat als die Dimension des Koordinatenraums.

9.4 Immersionen, Einbettungen, Submersionen, Charakterisierung von
Untermannigfaltigkeiten

Definition 9.4.1: Immersion, Submersion, Einbettung [Ziltener, 2024]

Seien 1, p € Ng, k € NU {oo}, U € R" offen und f : U — RP.

Sei x € U ein Punkt, in dem f differenzierbar ist. Wir sagen, dass f ein Punkt x eine Immersion
ist genau dann, wenn D f(x) injektiv ist. Wir sagen, dass f im Punkt x eine Submersion ist genau dann,
wenn f in jedem Punkt eine Immersion / Submersion ist. Wir nennen f eine Ck—Einbettung genau dann,
wenn f injektiv, CF und eine Immersion ist und f1: f(U) — U stetig ist.

FEine Funktion ist an einem Punkt eine Immersion, wenn ihre Ableitung dort injektiv ist, was bedeutet, dass sie
die lokale Dimension des Raumes nicht reduziert. Eine Submersion hingegen hat an einem Punkt eine surjektive
Ableitung und ”bedeckt” den Zielraum lokal vollstdndig, was oft eine Dimensionsreduktion bedeutet. Eine Einbet-
tung ist eine injektive, glatte Immersion, deren Umkehrfunktion ebenfalls stetig ist, wodurch sie eine topologisch
treue” Kopie des Ursprungsraums im Zielraum bildet.
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9.5 Satz von reguliren Wert

Definition 9.5.1: regulirer Wert [Ziltener, 2024]

Wir nennen zg einen reguldren Wert fiir ¢ genau dann, wenn g eine Submersion ist in jedem Punkt von

8 '(z0) = {x € Uo|g(x) = zo}.

Sonst nennen wir zg einen singuldren Wert fiir g.

Ein Wert zo heisst regulérer Wert fiir eine Funktion g, wenn g in jedem Punkt ihrer Urbildmenge g_l(zo)
eine Submersion ist. Das bedeutet intuitiv, dass die Funktion ¢ an allen diesen Punkten lokal ”gutartigiind
dusbreitendist und keine ”degenerierteAbbildung besitzt. Als Konsequenz bildet die Urbildmenge g_l(zo) selbst
eine "glatteSStruktur (wie eine Mannigfaltigkeit). Ist dies an mindestens einem Punkt von ¢~*(zo) nicht der Fall,
so wird zg als singuldrer Wert bezeichnet.

Satz 9.5.1 Satz vom reguldren Wert | ]
Das Urbild jedes reguléren Wertes fiir g ist eine C k—Untermannigfaltigkeit des R" der Dimension n — p.

Der Satz besagt, dass das Urbild g_l(zo) eines reguliren Wertes zo unter einer Funktion ¢ stets eine glatte
Untermannigfaltigkeit ist. Dies bedeutet, dass die Menge der Punkte, die auf zy abgebildet werden, lokal wie ein
flacher euklidischer Raum aussieht. Die Dimension dieser Untermannigfaltigkeit ist dabei préizise n — p, wobei n
die Dimension des Definitionsbereichs und p die Dimension des Wertebereichs von g ist.

9.6 Tagentialraum an eine Untermannigfaltigkeit

Definition 9.6.1: Tagentialraum [Ziltener, 2024]

Seien n € Ng, M € R" eine C'-Untermannigfaltigkeit und xo € M.

Wir definieren Ty, M, den Tangentialraum an M in Punkt x( als die Menge

Ty, M = {%(0)]W C R offen, x : W - R" :
0e€ W,x(0) = xq, x(t) € M,Vt € W, x differenzierbar in 0}

Wir nennen die Elemente von T,,M Tagentialvektoren an M in Punkt xo.

Der Tangentialraum Ty,M an eine C L Untermannigfaltigkeit M im Punkt x ist die Menge aller Geschwindig-
keitsvektoren x%(0) von glatten Kurven x(t), die in x¢ beginnen und fiir kleine ¢ vollstindig auf M liegen.

Satz 9.6.1 Charakterisierung des Tangentialraumes | ]
(i) Seien U C R" eine offene Umgebung von xq, V C R? offen und feclv, R"~%) so, dass
MU =gr(f) ={(y, f()ly € V}.
Wir bezeichnen die erste Komponente von x( € R? x R" mit Yo. Es gilt
Ty M = gr(D f(yo))-
(ii) Seien V € R? offen, yo € V,U € R" eine offene Umgebung von xo und ¢ : V — R" so, dass
U(yo) =x0, YV)=MnU.

und 1 im Punkt y, eine Immersion ist. Dann gilt

TxoM = lm(Dlp(yO))
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(iii) Seien U C R" eine offene Umgebung von xo und g : U — RP="" 50, dass
MU = g (g(x0)).
und ¢ im Punkt x¢ eine Submersion ist. Dann gilt

T;,M = ker(Dg(x0)) = Dg(x0)™(0).

Dieses Theorem bietet drei verschiedene Wege, den Tangentialraum Ty, M zu bestimmen — das ist die Menge aller
érlaubtenRichtungen, in die man sich auf der Mannigfaltigkeit M am Punkt xo bewegen kann.

Wenn M als Graph beschrieben wird: Ist die Mannigfaltigkeit M lokal der Graph einer Funktion f, so ist ihr
Tangentialraum Ty, M der Graph der Ableitung D f(yo) von f. Das bedeutet, die Tangentialebene ist die beste
lineare Ann#herung des Graphen an diesem Punkt.

Wenn M durch eine Parametrisierung gegeben ist: Wird M lokal durch eine Parametrisierung 1y beschrieben, die
eine Immersion ist, dann ist der Tangentialraum T, M das Bild (der Wertebereich) der Ableitung Di(yo). Der
Tangentialraum wird also von den ” Geschwindigkeitsvektoren”der Parametrisierung aufgespannt.

Wenn M als Niveaumenge beschrieben wird: Ist M lokal eine Niveaumenge einer Funktion g, die eine Submersion
ist, so ist der Tangentialraum Ty, M der Kern (Nullraum) der Ableitung Dg(x(). Das bedeutet, die Vektoren im
Tangentialraum stehen senkrecht zu den Gradientenvektoren der Funktion g.

9.7 Tangentialabbildung

Definition 9.7.1: Ck-Eigenschaft, allgemeiner Definitionsbereich [Ziltener, 2024]

Wir sagen, dass f um Punkt xg Ck ist genau dann, wenn es eine offene Umgebung U € R"” von xg und
eine Abbildung F € CK(U, RP) gibt, sodass

F=faufSnU.

Wir sagen, dass f Ck ist genau dann, wenn diese Bedingung fiir jeden Punkt xg € S erfiillt ist.
Wir definieren
Ck(S, R?) := {C*-Abbildung von S nach RF}.

Die C k—Eigenschaft fiir eine Funktion f auf einem beliebigen Definitionsbereich S wird iiber eine lokale Erweiter-
barkeit” definiert. Sie besagt, dass f um einen Punkt xo € S CK ist, wenn es in einer offenen Umgebung von xg
eine ” gewdhnliche” CX-Funktion F gibt, die auf dem Schnittpunkt mit S genau mit f tbereinstimmt. Ist diese
Bedingung fiir jeden Punkt in S erfiillt, so gilt die Funktion f insgesamt als C K auf S.

Definition 9.7.2: Tangentialabbildung [Ziltener, 2024]

Wir definieren die Tangentialabbildung (oder Ableitung) von f im Punkt x¢ als
Df(xo) := DF(xo)|1,,m = Tf(xo)N/

wobei U € R” eine offene Umgebung von xo und F € C*(U, R?) eine Fortsetzung von f|ynu ist.

Die Tangentialabbildung D f(x¢) ist die Ableitung einer Funktion f : M — N an einem Punkt xo € M. Sie
wird definiert, indem man die Standardableitung DF(x,) einer lokalen C!-Fortsetzung F von f auf einer offenen
Umgebung von xq betrachtet. Diese Abbildung DF(x() wird dann auf den Tangentialraum T,,M eingeschrénkt
und bildet Vektoren in den Tangentialraum Ty, )N ab.
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9.8 kritische Punkte einer Funktion auf einer Untermannigfaltigkeit
von R", Lagrange Multiplikationsregel

Definition 9.8.1: kritischer Punkt [Ziltener, 2024]

Ein Punkt xo € M heisst kritischer (oder stationérer) Punkt fiir f genau dann, wenn die Tagentialabbildung
von f in x( verschwindet, d. h.
Df(xg) = 0.

Wir schreiben
Crit f := {kritische Punkte fiir f}.

Definition 9.8.2: Lagrangefunktion [Ziltener, 2024]

Wir definieren die Lagrangefunktion fiir (F, ) als die Funktion

L:=Lpg:UXR’ >R, L(x,A):=F(x)-ATg(x).

Die Lagrangefunktion L(x, 1) = F(x) — AT g(x) ist ein mathematisches Werkzeug, das eine Zielfunktion F(x) mit
Nebenbedingungen g(x) = 0 kombiniert. Sie fithrt dabei neue Variablen, die Lagrange- Multiplikatoren A, ein, um
die Verletzung der Nebenbedingungen zu ”bestrafen”. Thr Hauptzweck ist es, ein eingeschrénktes Optimierungs-
problem in ein unbeschréinktes umzuwandeln, dessen kritische Punkte die Losungen des urspriinglichen Problems
beinhalten kénnen.

Satz 9.8.1 Lagrange-Multiplikationsregel [ ]

Wir nehmen an, dass 0 ein reguléirer Wert von g ist. Sei xo € U. Dann gilt xo € Crit f genau dann, wenn
es ein A € R? gibt, sodass (xg, A) € Crit L.

Die Lagrange-Multiplikationsregel besagt, dass ein Punkt x¢ genau dann ein kritischer Punkt einer Zielfunk-
tion unter den Nebenbedingungen g(x) = 0 ist, wenn es einen Vektor A von Lagrange-Multiplikatoren gibt,
sodass (xg, A) ein kritischer Punkt der zugehérigen Lagrangefunktion L(x, A) ist. Diese Aquivalenz erméglicht es,
eingeschriankte Optimierungsprobleme durch das Auffinden der kritischen Punkte der unbeschrankten Lagrange-
funktion zu l6sen. Die Regel setzt dabei voraus, dass 0 ein regulérer Wert der Nebenbedingungsfunktion g ist,
was eine ” Wohlgeformtheit” der Nebenbedingungen sicherstellt.
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Kapitel 10

Mehrdimensionale
Riemann-integration, Satz von Fubini
iiber wiederholte Integration,
Jordan-Mass, Substitutionsregel fiir
mehrdimensionale Integrale

71



10.1 Riemann-Integral

Definition 10.1.1: eigentliches Riemann-Integral [Ziltener, 2024]

(i) Ein n-dimensionaler (beschrinkter) Quader (oder Rechtkant) ist ein Produkt der Form
n
R=[]li=IxxI.
i=1

wobei Iy, ..., I, beschriankte Intervalle sind. Diese diirfen offen, abgeschlossen oder halb-offen sein.
(i) Wir schreiben die Linge eines Intevalls I als |I|. Wir definieren den (n-dimensionalen) Inhalt (oder

n
das (n-dimensionale) Volumen) eines Quaders R = l—[ I; als
i=1

n

vol(R) = vol,(R) = |R| := [ [Il| = 1] -+ | Ll.

i=1
Sei R € R" ein Quader.

(iii) Wir nennen ¢ : R — R eine Treppenfunktion genau dann, wenn ¢ eine endliche Linearkombination
von Indikatorfunktionen von n-dimensionalen Quadern ist.

iv) Sei R eine endliche Kollektion (=Menge) von Quadern, die in R enthalten sind, und ¢, € R fiir
q
Q € R. Wir definieren das Riemann-Integral der Treppenfunktion

9= ) coxg

QeR

/ p(x)dx := Z colQl.

R QeR

(v) Sei f : R — R eine beschrénkte Funktion. Wir definieren das untere und das obere Riemann-Integral
von f (iiber R) als

/f(x)dx = sup{/ @(x)dx|pR — R Treppenfunktion < f},
R R

/f(x)dx E= inf{/ Y (x)dx|y : R = R Treppenfunktion > f}.
R R

Wir nennen f eigentlich Riemann-integrierbar (itber R) genau dann, wenn

éf(x)dx > Zf(x)dx.

In diesem Fall definieren wir das Riemann-Integral von f (iiber R) als

./Rf(x)dx ::‘/I;f(x)dx.

Die obige Definition enstpricht der Definition aus Kapitel 6.1 bloss erweitern auf mehreren Dimensionen.

72



10.2 Eigenschaften des Riemann-Integrals

Proposition 10.2.1 Riemann-Integration [ ]

(i) (unteres und oberes Integral) Es gilt

/R Flx)dx < Zf(x)dx.

(ii) (Charakterisierung der Riemann-Integrierbarkeit) f ist Riemann-integrierbar genau dann, wenn es
fiir jedes € > 0 Treppenfunktionen ¢, 1 : R — R gibt, sodass

p<f<y,

'/Rt,b(x)dx—/R p(x)dx < e.

(iii) (Treppenfunktion integrierbar) jedes Treppenfunktion f = @ ist Riemann-integrierbar. Ihre Riemann-
Integral stimmt mit der Definition aus Kapitel 10.1 iiberein.

(iv) (stetige Funktion Riemann-integrierbar) Falls R abgeschlossen (und beschrinkt) ist und f stetig,
dann ist f Riemann-integrierbar.

v) (Monotonie) Falls f < g, dann gilt
8

/Rf(x)dx</Rg(x)dx.

(vi) (Linearitét) c¢f und f + g sind Riemann-integrierbar und

/Rcf(x)dx:c/Rf(x)dx,

[+ o= [ s [ g

(vii) Das Produkt zweier Riemann-integrierbarer Funktionen ist Riemann-integrierbar.

(viii) (Minimum, Maximum, Absolutbetrag) min{ f, ¢}, max{f, g} und | f| sind Riemann-integrierbar, und

es gilt
‘/fdx </|f|dx.
R R

Diese Proposition erweitert den Satz aus Kapitel 6.2 auf mehrdimensionale Rdume.

10.3 Satz von Fubini, wiederholte Integration

Satz 10.3.1 Satz von Fubini [ ]
Seien Q € R™ und R € R" Quader und f: Q XR — R.

Wir nehmen an, dass f Riemann-integrierbar ist. Dann sind die Funktionen

Rz /f(y,z)dy €R,
Je
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Razr—>/f(y,z)dy€]R
Q

Riemann-integrierbar, und

Qfo(x)dx:‘/R‘/Qf(y,Z)dydz=‘/R7Qf(y,2)dydz,

Der Satz von Fubini besagt, dass das Integral einer Riemann-integrierbaren Funktion iiber einem Produktbereich
(wie QX R) durch iterierte Integration berechnet werden kann. Hierbei sind die Funktionen, die durch das Fixieren
einer Variable entstehen, selbst Riemann-integrierbar. Dies erlaubt es, die Gesamtintegration schrittweise iiber
jede Variable durchzufiihren und die Reihenfolge der Integration zu vertauschen, ohne das Ergebnis zu &ndern.

10.4 Jordan-Mass

Definition 10.4.1: Jordan-Mass [Ziltener, 2024]

Eine Teilmenge S € R” heisst Jordan-messbar (oder Jordan-Bereich) genau dann, wenn 1g Riemann-
integrierbar ist. In diesem Fall definieren wir ihr Jordan-Mass (oder ihren Jordan-Inhalt) als

vol(S) := vol,(S) := |5 := ,/s ldx.

In einfachen Worten gesagt ist das Jordan-Mass eine sehr formelle Art das Volumen, die Flidche oder die Lénge
zu berechnen.

10.5 Substitutionsregel, Integral einer drehinvarianten Funktion, Trans-
formationssatz fiir das Volumen

Satz 10.5.1 Substitutionsregel fiir ein mehrdimensionales Integral [ ]

Seien U,V C R™ offen, ¢ : V. — U ein C L_Diffeomorphismus, S € R" eine beschriinkte Teilmenge, sodass
SCUund f: S — R. Dann gilt:

(i) f ist Riemann-integrierbar (iiber S) genau dann, wenn

(f oy)ldetDy| : ~(S) > R
Riemann-integrierbar ist.

(ii) In diesem Fall gilt, dass

/ f)dx = / (f o )(y)|det Dy (y)]dy.
3 P1(S)

In manchen Fillen ist es einfacher, eine Funktion iiber einen anderen Koordinatenraum zu integrieren. (kartesisch,
polar, etc.) Die Substitutionsregel fiir ein mehrdimensionales Integral erlaubt dies. Man muss jedoch beachten,
dass man die Jakobische Determinante (Skalierungsfaktor) miteinbezieht, da beim wechsel des Koordinatenraumes
die Funktion gestreckt bzw. gestaucht wird.
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Korollar 10.5.1 Integral einer drehinvarianten Funktion [Ziltener, 2024]

Es gilt, dass
To ~
/ f(x)dx = 27'(/ f(r)rdr..
B2, 0

Dieses Korollar vereinfacht die Berechnung von Integralen drehinvarianter Funktionen iiber einer Kreisscheibe
(einem Kreisbereich in IRQ). Da der Funktionswert solcher Funktionen nur vom Abstand zum Ursprung abhéngt,
kann man sie als reine Funktion des Radius f (r) darstellen. Das zweidimensionale Integral iiber die Kreisscheibe
wird dadurch in ein einfaches eindimensionales Integral iiber den Radius umgewandelt, wobei der Faktor 27 (fiir
den vollen Winkelbereich) und der Jacobi-Term r (fiir die Flichenskalierung) beriicksichtigt werden.

Korollar 10.5.2 Transformationssatz fiir das Volumen [Ziltener, 2024]

Seien U,V < R" offen, ¢ : V.— U ein C L_Diffeomorphismus und A eine Jordan-messbare Menge, sodass
A C V. Dann ist {(A) Jordan-messbar mit

Y(A)] = /A [det(Di(y))ldy.

Dieser Transformationssatz ermoglicht die Berechnung des Volumens (oder Flicheninhalts) einer durch eine
Diffeomorphismus-Abbildung ¢ transformierten Menge 1P(A). Anstatt das Integral {iber die potenziell kom-
plexe transformierte Menge ¢(A) zu bilden, berechnet man das Volumen, indem man den Betrag der Jacobi-
Determinante von ¢ iiber die urspriingliche, oft einfachere Menge A integriert. Die Jacobi-Determinante fungiert
dabei als lokaler Skalierungsfaktor, der die Volumenénderung durch die Transformation korrekt berticksichtigt.
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Kapitel 11

Vektorfelder und die Sitze von Green,
Stokes und Gauss

11.1 Kurvenintegral, Orientierung, Ck-Gebiet

Definition 11.1.1: Kurvenintegral einer Funktion [Ziltener, 2024]

Eine (eingebettete) CF-Kurve in R" ist eine Ck—Untermannigfaltigkeit des R" der Dimension 1.
Sei C € R" eine kompakte C*-Kurve.
Es gilt:
(i) Es gibt ein I € No und fiir jedes j = 1,...,] ein kompaktes Intervall I; positiver Linge und eine

Immersion x; € C'(I;, R"), sodass
1

|~y =c

j=1
und so, dass die Abbildung
U{j} xInt I; 3 (j, ) - x(t) € C
i

injektiv ist. (Dabei bezeichnet Int I; das Innere von I;)

Seien jetzt f : C — R eine stetige Funktion und [ und (I, xj)=1,...;. Wir definieren
!
5, @)=Y, [ FoxOl o,
=1

(ii) Die Zahl I(f, (I;, xj);) hangt nicht von (I}, x;); ab.

Wir definieren das (Kurven-)Integral von f iiber C als

/Cfds = I(f, (I, xj)j)-

Ein Kurvenintegral summiert die Werte einer stetigen Funktion entlang eines glatten Pfades (einer C 1-Kurve)
im Raum. Dazu wird die Kurve in parametrisierbare Abschnitte unterteilt, und die Funktion wird entlang jedes
Abschnitts iiber seine Bogenlinge integriert. Der resultierende Gesamtwert ist dabei unabhiingig davon, wie die

Kurve in Abschnitte zerlegt oder wie diese parametrisiert werden.
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Definition 11.1.2: Einheitstangentialvektorfeld [Ziltener, 2024]

Ein Einheitstangentialvektorfeld lings C (oder eine Orientierung von C) ist eine stetige Abbildung T :
C — R", sodass
T(x) e T,C||T(x)]] =1, VxeC.

Ein Einheitstangentialvektorfeld lings einer Kurve C ist eine stetige Zuordnung, die jedem Punkt x auf der Kurve
einen Vektor T(x) zuweist. Dieser Vektor T(x) zeigt dabei stets tangential zur Kurve und hat eine Linge von genau
Eins. Durch diese konsistente Zuweisung eines Richtungsvektors definiert das Feld eine eindeutige Orientierung
fir die Kurve.

Definition 11.1.3: Kurvenintegral eines Vektorfeldes [Ziltener, 2024]

Wir nehmen an, dass C kompakt ist. Wir definieren das (Kurven-)Integral (oder das Ringintegral oder die
Zirkulation) von X iiber C beziiglich T als

/ X-ds:z/X~Tds,
c,T C

wobei die rechte Seite das Kurvenintegral der Funktion X - T : C — R bezeichnet.

Das Kurvenintegral eines Vektorfeldes summiert den Einfluss eines Vektorfeldes X entlang einer bestimmten
Kurve C. Es berechnet, wie viel des Feldes X an jedem Punkt in Richtung der Kurve (T) wirkt (dies ist das
Skalarprodukt X - T). Dieser gerichtete Anteil wird dann iiber die gesamte Linge der Kurve aufsummiert, um den
Gesamteffekt des Feldes entlang des Weges zu erhalten.

Definition 11.1.4: C¥-Gebiet [Ziltener, 2024]

Ein (n-dimensionales) C’f—Gebiet ist eine offene Teilmenge U C R", sodass es fiir jeden Punkt xo € U
eine offene Umgebung U’ von x und eine C¥-Submersion ¢ :U" — R gibt, sodass

g(x0) =0, UNU’ =g *((-,0)) = {x € R"|g(x) < 0}.

Ein CF-Gebiet ist eine offene Menge, deren Rand eine bestimmte Glattheitsstufe k aufweist. Dies bedeutet, dass
man den Rand lokal durch eine C*-glatte Funktion g beschreiben kann, wobei g(x) = 0 auf dem Rand, g(x) <0
innerhalb des Gebiets und g(x) > 0 ausserhalb gilt. Die ”Submersion”- Bedingung stellt dabei sicher, dass der
Rand nirgendwo flachist und eine klare Trennung zwischen innen und aussen ermdoglicht.

Definition 11.1.5: positive Orientierung des Randes [Ziltener, 2024]

Sei U € R? ein C' — Gebiet. Wir definieren die positive Orientierung von dU (beziiglich U),
T:oU — R?,

wie folgt. Seien xo € dU und U’, g wie in der obigen Definition. Wir definieren T(x¢) € Ty,dU als den
eindeutigen Vektor der Linge 1, sodass das (geordnete) Paar (Vg(xo), T(xo)) eine positive Basis von R?
ist.

Einfach gesagt ist die positive Orientierung des Randes, wenn man im Gegenuhrzeigersinn entlang des Randes
einer Menge geht.
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11.2 Satz von Green

Satz 11.2.1 Green | ]

Seien U C R? ein beschrinktes C!-Gebiet und X ein C!-Vektorfeld auf U. Dann ist das Integral der
Rotation von X iiber U gleich dem Integral von X iiber den Rand von U, d. h.

/rothx:/ X-ds:/X-Tds.
u au,T ou

wobei T die positive Orientierung von dU ist.

Was sagt dieser Satz aus. Dieser Satz sagt aus, dass wenn ein Vektorfeld eine Rotation hat, so muss man nur
die Rotation am Rend des Vektorfeldes betrachten. Die Rotation am Rand des Vektorfeldes ist die resultierende
Rotation des Vektorfeldes.

11.3 Untermannigfaltigkeit mit Rand und Koorientierung einer Hy-
perflache

Definition 11.3.1: Parametrisierung, Untermannigfaltigkeit mit Rand
[Ziltener, 2024]

Eine likale innere C¥-Parametrisierung von M (der Dimension d) ist ein Paar (V, 1), wobei V € R? eine
offene Teilmenge U von R" mit (V) = M N U gibt. Eine lokale CF-Randparametrisierung von M ist ein
Paar (V, ), wobei

V cRZ,:=R"! x[0,00).

eine (relativ) offene Teilmenge ist und ¢ : V. — R" eine C k-Einbettung ist, sodass es eine offene Teilmenge
U von R" mit ¢(V) = M N U gibt. Eine lokale CK-Parametrisierung von M ist eine lokale innere oder
Randparametrisierung vom M der Klasse C K

Wir nennen M eine Ck—Untermannigfaltigkeit der Dimension D mit Rand genau dann, wenn es
fiir jeden Punkt xo € M eine lokale CX-Parametrisierung (V,¥) mit xo € (V) gibt. Sie M eine solche

Untermannigfaltigkeit. Wir definieren den intrinsischen Rand von M als die Menge

oM := U{lp(V N (R x {0}))|(V, ¥) lokale C*¥ Randparametrisierung von M}.

Eine Ck—Untermannigfaltigkeit mit Rand ist eine glatte geometrische Form, bei der jeder Punkt lokal entweder
wie ein offenes Stiick des R? oder wie ein offenes Stiick eines RY mit einem geraden Rand aussieht. Diese loka-
len Ansichten werden durch Parametrisierungen” beschrieben: Innere Parametrisierungen fiir Punkte fernab des
Randes und Randparametrisierungen fiir Punkte, die tatséichlich auf dem Rand der Form liegen. Der intrinsi-
sche Rand der Mannigfaltigkeit (dM) ist dann die Menge aller Punkte, die diesen ”geraden Réndern”der lokalen
Randparametrisierungen entsprechen.

Definition 11.3.2: parametrisierte Untermannigfaltigkeit [Ziltener, 2024]

Eine (globale) C¥-Parametrisierung von M ist ein Paar (V, 1), wobei V C R? ein beschrinktes offenes
Ck-Gebiet ist und P V — R”" eine Ck—Einbettung mit Bild M ist. Wir nennen M C R" eine kompakte
(global) parametrisierte Ck—Untermannigfaltigkeit der Dimension d mit Rand genau dann, wenn es eine
globale Ck-Parametrisierung von M gibt.

Eine globale C k—Parametrisierung ist eine einzelne, glatte Abbildung, die ein beschréinktes Stiick des RR? (mitsamt
seinem Rand) vollstéindi und liickenlos auf die gesamte Form M abbildet. Eine kompakte (global) parametrisierte
C k—Untermannigfaltigkeit mit Rand ist demnach eine Form, die sich als Ganzes durch eine solche einzige Master-
Karte”beschreiben ldsst. Dies bedeutet, dass M eine topologisch Bolide”, glatte und begrenzte Form ist, die ihren
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Rand vollstandig enthélt und keine globalen Locher oder Verwindungen wie eine Kugeloberfliche aufweist.

Definition 11.3.3: Einheitsnormalvektorfeld [Ziltener, 2024]

Eine Koorientierung von M (oder ein Einheitsnormalvektorfeld auf M) ist eine Abbildung v € C(M, R"),
sodass
v(x) € TeM*,||v(x)|| =1,VYx € M.

In einfachen Worten gesagt ist das Einheitsnormalvektorfeld ein Vektorfeld, dessen Vektoren senkrecht zur Ober-
fliche der Menge steht.

Definition 11.3.4: induzierte Orientierung [Ziltener, 2024]

Wir definieren Die durch v induzierte Orientierung T von dX wie folgt. Seien x € ¥ und (V, ) eine lokale
Cl-Randparametrisierung von X, deren Bild x enthilt und die positive Orientierung erfiillt. Wir definieren
y =9 1(x) € VC R, und
D
T(x) := D) _ ps.
ld1(y)

. J

Diese Definition beschreibt, wie eine gegebene Orientierung v (Einheitsnormalenvektorfeld) einer Mannigfaltigkeit
Y eine Orientierung fiir deren Rand d¥ induziert. An jedem Punkt x auf dem Rand wird dabei ein tangentialer
Einheitsvektor T(x) definiert. Dieser Vektor T(x) zeigt entlang des Randes in eine konsistente Richtung, die durch
die lokale Randparametrisierung und die Bedingung der positiven Orientierung”(also der Abstimmung mit v)
festgelegt wird.

11.4 Integral einer Funktion iiber eine Untermannigfaltigkeit, Zu-
sammenhang mit dem Kurvenintegral

Definition 11.4.1: Gramsche Matrix [Ziltener, 2024]

Sei A € R™“,

Wir definieren die zu A gehorige gramsche Matrix als die Matrix ATA. Wir definieren die zu A
gehorige gramsche Determinante als det(ATA), die Determinante der gramschen Matrix.

Definition 11.4.2: Integral iiber kompakte Untermannigfaltigkeit mit Rand
[Ziltener, 2024]

Fiir jedes f € C(M, R) definieren wir das Riemann-Integral von f (iiber M) als

[ san=16.4;.5),
M

wobei die rechte Seite eine parametrisierbare Untermannigfaltigkeit ist mit einer beliebigen Kollektion
(¢, Sj)j. Wir definieren das d-dimensionale Volumen von M als

Volyg(M) := / 1dA.
M

. J

Diese Definition erklédrt, wie man eine Funktion f iiber eine allgemeine, gekriimmte Form oder Oberfliche (M)
integriert, die auch Rénder haben kann. Die Berechnung (I) erfolgt, indem man die gekriimmte Form M in kleinere
Abschnitte zerlegt und diese mithilfe von ,, Abwicklungsfunktionen® (1;, S;) auf flache Bereiche iibertrigt, wo das
Integral unter Beriicksichtigung der Kriimmung (dA) ausgefiihrt wird. Das d-dimensionale Volumen von M ist
dann einfach das Integral der konstanten Funktion 1 {iber M.
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11.5 Integral iiber parametrisierbare Untermannigfaltigkeit, zweidi-
mensionaler Fall, Fluss eines Vektorfeldes durch Hyperfliche

Definition 11.5.1: Fluss durch Hyperfliche [Ziltener, 2024]

Wir definieren den Fluss von X durch M beziiglich v als das Integral

/ X-dA:=/X-vdA,
M,y M

wobei die rechte Seite ein Integral iiber kompakte Untermannigfaltigkeit mit Rand ist.

. J

Der Fluss quantifiziert die Gesamtmenge einer gerichteten Grofie (Vektorfeld X), die eine gegebene Oberfliche (M)
durchdringt. Er wird berechnet, indem man an jedem Punkt der Oberfliche misst, wie stark das Feld senkrecht
zur Oberflache steht (mithilfe des Normalenvektors 1), und diese Beitrége iiber die gesamte Fldche summiert.
Dies ergibt ein MaB dafiir, wie viel Materiedder Einflusstatsiichlich die Oberfliche durchquert, und nicht nur an
ihr entlangstromt.

11.6 Satz von Stokes
Satz 11.6.1 Stokes [ ]

Seien ¥ C R? eine kompakte C2-Fliche, v : ¥ — R? eine Koorientierung. U C R? eine offene Umgebung
von ~ und X € C1(U,R3). Dann gilt, dass

(VxX)-dA:/(VxX)xvdA:/ X~ds:/ X - Tds,
T ox,T oz

wobei T die durch v induzierte Orientierung von J¥. ist.

v

Der Satz von Stokes stellt eine fundamentale Verbindung zwischen einem Oberflichenintegral und einem Li-
nienintegral her. Es besagt, dass die Gesamtmenge an Rotationdder ”Wirbelstarkeéines Vektorfeldes, die eine
gegebene Oberfliche durchdringt, gleich ist. Dieser Wert entspricht exakt der gesamten SZirkulationoder dem
Fluss” desselben Vektorfeldes entlang des Randes dieser Oberfliche.

11.7 Satz von Gaufl

Satz 11.7.1 Divergenzsatz von GauB | ]

Seien U € R" ein beschrinktes C'-Gebiet und X € C*(U, R"). Dann ist das Integral der Divergenz von X
iiber U gleich dem Fluss von X durch den Rand von U, d. h.

/V-de:/ X-dA:/ X -vdA,
u ou,v ou

wobei v die nach aussen weisende Koorientierung von JU ist.

Der Divergenzsatz von Gaufl verbindet das Integral der Divergenz eines Vektorfeldes iiber ein Gebiet mit dem
Fluss dieses Feldes durch dessen Rand. Er besagt, dass die gesamte Erzeugungéder Absorptionéines Vektorfeldes
innerhalb eines Volumens genau dem Nettofluss des Feldes aus diesem Volumen durch seine Oberfléche entspricht.
Anschaulich bedeutet dies, dass die Summe aller lokalen Quellen und Senken im Inneren eines Bereichs dem
Gesamtfluss durch dessen dussere Begrenzung entsprechen muss.
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